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Dedekind zeta

Throughout, let F be a number field.

Definition (Dedekind zeta function)

Dedekind zeta function is defined by

ζF (s) B
∑
I,(0)

1
N(I)s , Re(s) > 1

I ⊂ OF non-zero ideal

N(I) the norm of I

Meromorphic on C, simple pole at s = 1.
When F = Q obtain Riemann zeta ζ(s).
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Analytic class number formula

Theorem (Analytic class number formula)

Have
Ress=1 ζF (s) ∼Q×

√
|∆F |πr2 RegF ,

where
∆F is the discriminant

r2 is the number of pairs of complex embeddings

RegF is a determinant of logs of units of F (mysterious!)

Ress=1 ζQ(
√

5)(s) = 2
5
√

5 log
(1 +

√
5

2
)

Ress=1 ζQ(ζ5)(s) = 4
125π

2√5 log
(1 +

√
5

2
)
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Analytic non-class number formula

Theorem (Analytic non-class number formula)
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Polylogarithms

Analytic class number formula gives “ζF (1)”.
Higher values of ζF require higher logs.

Definition (m-th polylogarithm)

The m-th polylogarithm is

Lim(z) B
∞∑
m=1

zn

nm
, |z| < 1

Note: Li1(z) = − log(1− z).

Analytic continuation to C via Lim+1(z) =
∫ z

0
Lim(t)dt

t
.

6 / 32



Zetas and polylogs Canonical classes Construction of c2m−1 Higher-ratios Explicit reduction

Single-valued polylogs

Definition (Bloch-Wigner-Ramakrishnan-Zagier polylogarithm)

A single-valued polylogarithm is defined by

Lm(z) = Rem
(m−1∑
k=0

2kBk
k! Lim−k(z) logk(z)

)
, m ≥ 2

Rem =
{

Re m odd
Im m even

Bk the m-th Bernoulli number

L 1(z) = − log |1− z|

L 2(z) = Im(Li2(z) + log(1− z) log |z|)

L 3(z) = Re(Li3(z)− Li2(z) log |z| − 1
3 log(1− z) log2 |z|)
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Some notation

Write

dm =
{
r1 + r2 m odd
r2 m even

Conceptually: order of vanishing of ζF (−m)

Extend Lm,Lim and σ : F → C by linearity to

Z[F ] =
{∑

i

λi[xi] | λi ∈ Z, xi ∈ F
}
,

so
f
(∑

i

λi[xi]
)

=
∑
i

λif(xi)
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Zagier’s conjecture

Conjecture (Zagier)

Let m ≥ 2, order embeddings of F so σi = σi+r1+r2 .
Exists y1, . . . , ydm ∈ Z[F×] so that

ζF (m) ∼Q×

√
|∆F |πmdm+1 det

(
Lm(σi(yj))

)dm

i,j=1 .

Recipe to find yi inductively, using numerical algorithm.

ζQ(
√

5)(3) ?= 24
125
√

5 det
(

L 3(1) L 3(1+
√

5
2 )

L 3(1) L 3(1−
√

5
2 )

)
≈ 1.0275480117 . . .

ζQ(ζ5)(2) ?= −23√5
3 · 54 π

4 det
(

L 2(ζ5) L (ζ2
5 )

L 2(ζ2
5 ) L (ζ4

5 )

)
≈ 1.0923496617 . . .
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Status

n = 2: Zagier (weak version)
Bloch-Suslin ∼1981
Goncharov (subtle fix)

n = 3: ∼1993 Goncharov via Li3 breakthrough

n = 4: 2018 Goncharov-Rudenko via Q4 new geometric
identity

Also known for special classes of field F
Cyclotomic fields

Abelian fields(?)
Goncharov has a strategy which can prove specific m via Borel’s
theorem
Caveat: requires heavy input of currently unknown Lm-functional
equations and identities
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Borel’s Theorem

1977 Borel defined regulator from K-theory

Rbo
m : K2m−1(C)→ R(m− 1) C R(2πi)m−1

and proved

Theorem (Borel)

Consider

φ : K2m−1(F )→
⊕
σi

K2m−1(C)→ ZHom(F,C) ⊗ R(m− 1)

1 φ is injective (mod torsion)

2 image is a lattice ΛFm (in invariants under cx conjugation)
3

ζF (m) ∼Q×

√
|∆F |πmdm+1 covol(ΛmF )
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Canonical classes

Strategy: find formula for Rbo
m via Lm.

Can rephrase via canonical cohomology classes.

Km(F ) � πn(BGL+F )
Suslin
� πn(BGL+

nF ) Hurewicz−−−−−→ Hn(BGL+
nF )

This is injective mod torsion, so

Kn(F ) ⊂ Hn(GLn,Q)

Fact
Borel regulator Rbo

m arises from certain canonical element

c2m−1 ∈ H2m−1
cts (GLm(C),R(m− 1))

How to construct c2m−1 via Lm?
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Construction of c1

Represent c ∈ Hm−1
cts (G,R) via cochain φ : Gm → R.

Fact

φ1 GL1(C)2 → R
φ1(g1, g2) = log(det(g−1

1 g2))

defines 1-cocycle, and represents c1.

Cocycle condition corresponds to log functional equation.

log(x)− log(y) = log
(x
y

)
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Construction of c3

Introduce coordinates

Confm(n) = {(v1 . . . , vn)|vi ∈ Cm}
/

GLm

Write
〈i1, . . . , im〉 = det(vi1 · · · vim)

Classical cross-ratio is a function on Conf4(2)

cr(v1, . . . , v4) = 〈13〉〈24〉
〈14〉〈23〉

= z1 − z3
z1 − z4

· z2 − z4
z2 − z3

where zi ∈ P1(C)↔ vi ∈ C2
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Construction of c3

Theorem (Bloch)

φ2 : GL2(C)4 → R
φ2(g1, . . . , g4) = L 2(cr(g1v, . . . , g4v)))

defines 3-cocycle, and represents c3.

Get Zagier’s Conjecture for n = 2 via Borel.
Cocycle condition corresponds to non-trivial L 2 functional
equation

L 2
(
[x] + [y] +

[ 1− x
1− xy

]
+ [1− xy] +

[ 1− y
1− xy

])
= 0

Famous five-term relation.
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Construction of c5

Goncharov defines a (pre-)triple-ratio

cr3(v1, . . . , v6) = 〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉

Theorem (Goncharov)

φ3 : GL3(C)6 → R
φ3(g1, . . . , g6) = Alt6 L 3(cr3(g1v, . . . , g6v))

defines 5-cocycle, and represents c5.

Get Zagier’s Conjecture for n = 3 via Borel.
Cocycle condition corresponds to 840-term Li3 functional
equation. Related 22-term functional equation
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22-term

Theorem (22-term relation, Goncharov)

L 3

(
Cyc

(
[z] +

[
−x(yz − z + 1)

xz − x + 1

]
+
[

yz − z + 1
y(xz − x + 1)

]
−
[

yz − z + 1
yz(xz − x + 1)

]

+ [xz − x + 1] −
[

xz − x + 1
z

]
+
[

xz − x + 1
xz

])
+ [−xyz]

)
= 3 L 3(1)

How to generalise the cross-ratio and triple-ratio? Naive guesses
like

cr4(v1, . . . , v8) = 〈1235〉〈2346〉〈3457〉〈4518〉
〈1238〉〈2345〉〈3456〉〈4517〉

fail. Not functional equations for L 4!
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m-ratio

Despite failure of naive generalisation, Goncharov conjectures some
generalisation exists

Conjecture
For m ≥ 2, there exists∑

i

λi[ri] , ri ∈ Q(Conf2m(m)) (1)

such that

φm(g1, . . . , g2m) = Alt2m
∑
i

λi Lm(ri(g1v, . . . , g2mv))

is a (2m− 1)-cocycle and represents c2m−1.

Formal linear combination (1) is called an m-ratio
Goncharov-Rudenko show 4-ratio exists, but do not construct it.

21 / 32



Zetas and polylogs Canonical classes Construction of c2m−1 Higher-ratios Explicit reduction

Grassmannian polylogs

Key tool: Grassmannian polylogs Grm

Definition (Grassmannian polylog)

Grm is the multivalued analytic funtion defined by

dGrm(v1, . . . , v2m) = Alt2mA(v1, . . . , vm | vm+1, . . . , v2m) ·
d log〈m+ 1, . . . , 2m〉

where A(v1, . . . , vm | w1, . . . , wm) is geometrically defined Aomoto
polylogarithm.

Theorem (Goncharov)

A single-valued version of Grm represents c2m−1

Alt2m+1 Grm = 0 because each symbol term depends on 2m− 1
points.
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Aomoto polylogs








































































































A(v1, . . . , vn | w1, . . . , wn) =
∫

∆
d log

(
w2 · x
w1 · x

)
∧ d log

(
wn · x
w1 · x

)
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Reduction of Grm

Goal: Rewrite Grm in terms of Lm

Problem: An obstruction exists, meaning this is impossible

Fix: Can modify Grm by trivial coboundary terms
depending on ≤ 2m− 1 points. Find trivial
coboundary correction which kills obstruction.

Goncharov-Rudenko already do this in weight 4.
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I3,1 and ρ-coordinates

Definition (I3,1)

I3,1 multiple polylog is defined by

I3,1(x, y) = Li3,1
(y
x
,

1
y

)
=

∑
0<n<m

yn−mx−m

n3m

Definition (ρ-coordinates)

Coordinates on Conf8(4)

ρi = ρi,i+1,i2︸      ︷︷      ︸
mod 6

= 〈i, i+ 1, i+ 2, 7〉
〈i, i+ 1, i+ 2, 8〉

Shorthand ρi,j = ρi − ρj
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Reduction of Gr4

Theorem (CGR, 2019)

Modulo products
7

144 Gr4 = Alt8
[
I3,1

(ρ1,2ρ3,4
ρ3,2ρ1,4

,
ρ1
ρ1,4

)
+ 2I3,1

(ρ1,2
ρ1

,
ρ3,2
ρ3,4

)
+6 Li4

( ρ1ρ3,2
ρ1,2ρ3,4

)]
.

Proof.
Found with computer assistance. Explicit calculation of the symbol
by hand. �

Note: some structure in this reduction.
Makes explicit first step of Goncharov-Rudenko.
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Behaviour of I3,1

Heuristic: modulo explicit Li4 terms

I3,1(x, y) ∼ Li2(x) ∧ Li2(y) .

Related to the obstruction to Gr4 = Li4’s

Theorem (Gangl, 2012)

Exist fi(x, y, z) rational functions, so that modulo products

I3,1
(
z, [x] + [y] +

[ 1− x
1− xy

]
+ [1− xy] +

[ 1− y
1− xy

])
=

122∑
i=1

ci Li4(fi(x, y, z)) C V (z, [x, y])

Found with computer assistance. Goncharov-Rudenko have a
geometric derivation.

28 / 32



Zetas and polylogs Canonical classes Construction of c2m−1 Higher-ratios Explicit reduction

Gr4 coboundary

Goncharov gives Gr4 coboundary as

Alt8 I3,1(cr(34 | 2567), cr(67 | 1345)) ,

with projected cross-ratio

cr(ab | cdef) = 〈abce〉
〈abcf〉

〈abdf〉
〈abde〉

.

Symmetrise I3,1 for convenience using

I3,1(x, y) + I3,1(x−1, y) = Li4’s ,
I3,1(x, y) + I3,1(1− x, y) = Li4’s .

Write Sym36(x, y) for these extra Li4 terms.
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Gr4 to Li4’s

Theorem (Explicit 4-ratio, CGR, 2019)
7

144 Gr4 +2 Alt8 I
sym
3,1 (cr(34|2567), cr(67|1345)) =

Alt8

{
− V

(
ρ4
ρ1

; [ ρ4,2
ρ4,1

; ρ4,1
ρ4,3

]− [cr(43|2685); cr(48|7653)]

+ 1
4 [cr(43|1256); cr(43|1268)]− 1

12 [cr(43|1256); cr(42|1365)]
)

+ V (ρ2
ρ1

; −[cr(43|2685; cr(48|7653)] + [cr(48|7235; cr(48|7263)]

+ 1
2 [cr(46|5238; 43|2568)])

+ Sym36(ρ1,2ρ3,4
ρ1,4ρ3,2

, ρ1
ρ1,4

) + 2 Sym36(ρ1,2
ρ1
,
ρ3,2
ρ3,4

) + 6 Li4( ρ1ρ3,2
ρ1,2ρ3,4

)
}
.

Corollary
Symmetrising over 9 points gives a new Li4 functional equation
with 1775 S8-orbits. Compute assistance gives 368 S8 orbits.
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Higher weight

Theorem (CGR, 2019)

For any m ≥ 2, have

− 2m− 1
m!(m− 1)! Grm = Alt2m I(0; 0, ρ1, ρ2, . . . , ρm−1; ρm) ,

with generalised ρ-coordinates.

Theorem (CGR, 2019)

Expression for Gr5 in terms of four I4,1 terms and 2 Li5, under
Alt10. Coboundary correction term expressed via two I4,1 terms.

This is a starting point for reduction in weight ≥ 5. (In progress.)
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Summary

Statement of Zagier’s polylogarithm conjecture on ζF (m)

Goncharov’s expected strategy for proof involving m-ratios

Expressions for Grassmannian polylogs

Explicit reduction of Gr4 and 4-ratio

New functional equations for Li4

Progress in weight 5
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