Zagier's polylogarithm conjecture on $\zeta_F(4)$ and an explicit 4-ratio

> Steven Charlton Universität Hamburg

> > 23 June 2022 INI, Cambridge KAHW02

Outline		

Joint work with H. Gangl & D. Radchenko, arXiv:<u>1909.13869</u> Building on A. Goncharov & D. Rudenko, arXiv:1803.08585

1 Dedekind zeta function and polylogarithms

2 Cohomology and constructing canonical classes

3 Higher ratios and Grassmannian polylogs

4 Explicit reduction of Gr_4 and a 4-ratio

Dedekind zeta function and polylogarithms

Zeta and polylogs

Canonical classes

Higher-ratios

Explicit reduction

Dedekind zeta function

Throughout: F is a number field, \mathcal{O}_F the ring of integers

Definition

The Dedekind zeta function is

$$\zeta_F(s) \coloneqq \sum_{\substack{(0) \neq \mathfrak{a} \subset \mathcal{O}_F \\ \mathfrak{a} \text{ non-zero ideal}}} |\overset{\text{norm of } \mathfrak{a}}{\mathcal{O}_F/\mathfrak{a}}|^{-s}, \quad \operatorname{Re}(s) > 1$$

• Meromorphic on \mathbb{C} , simple pole at s = 1 • For $F = \mathbb{Q}$, get the Riemann zeta

Theorem (Analytic class-number(-less) formula)

$$\operatorname{Res}_{s=1} \zeta_F(s) \sim_{\mathbb{Q}^{\times}} \sqrt{|\Delta_F|} \pi^{r_2} \operatorname{Reg}_F,$$

• Δ_F is the discriminant,

- r₂ is number of pairs of complex embeddings,
- Reg_F is a determinant of logarithms of units of F. (Mysterious!)

Have ' $\zeta_F(1)$ ' via logarithms. So higher values of $\zeta_F(m)$ should need higher logarithms. 4

Zeta and	pol	y	logs
----------	-----	---	------

Higher-ratio

Explicit reduction

07

1 /

Polylogarithms

Definition (Polylogarithm)

The weight m polylogarithm is

$$\operatorname{di}_m(z) \coloneqq \sum_{k=1}^\infty \frac{z^k}{k^m}, \quad |z| < 1$$

Li₁(z) =
$$-\log(1-z)$$
 Analytic continuation via $\operatorname{Li}_{m+1}(z) = \int_0^z \operatorname{Li}_m(t) \frac{\mathrm{d}t}{t}$

Definition (Bloch-Wigner-Ramakrishnan-Zagier polylogarithm)

A single-valued version of the polylogarithm is

$${\mathscr L}_m(z) = egin{cases} {
m Re} & \left(\sum_{k=0}^{m-1} \frac{2^k B_k}{k!} \operatorname{Li}_{m-k}(z) \log^k(z)
ight) & m \; {
m odd}, \ m \; {
m even} \end{cases}$$

 \blacksquare B_k the k-th Bernoulli number

$$\mathcal{L}_1(z) = -\log|1-z| \qquad \mathcal{L}_2(z) = \operatorname{Im}(\operatorname{Li}_2(z) + \log(1-z)\log|z|)$$
$$\mathcal{L}_3(z) = \operatorname{Re}(\operatorname{Li}_3(z) - \operatorname{Li}_2(z)\log|z| - \frac{1}{3}\log(1-z)\log^2|z|)$$

Zeta and polylogs

Canonical classes

Higher-ratios

Explicit reduction

Zagier's polylogarithm conjecture

Write
$$d_m =$$
 order of vanishing of $\zeta_F(1-m) = \begin{cases} r_1 + r_2 & m \text{ odd} \\ r_2 & m \text{ even} \end{cases}$

- Order embeddings $\sigma_i \colon F \to \mathbb{C}$, so $\sigma_i = \overline{\sigma_{i+r_1+r_2}}$, (r_1 real, r_2 pairs cx embeddings)
- Extend \mathscr{L}_m, σ_i to 'formal linear combinations' in $\mathbb{Z}[F^{\times}]$ by linearity

Conjecture (Zagier)

Let
$$m \geq 2$$
. There exists $y_1, \ldots, y_{d_m} \in \mathbb{Z}[F^{\times}]$ so that

$$\zeta_F(m) \sim_{\mathbb{Q}^{\times}} \sqrt{|\Delta_F|} \pi^{md_{m+1}} \det \left(\mathscr{L}_m(\sigma_i(y_j)) \right)_{i,j=1}^{d_m}$$

Recipe to find (candidate) y_i inductively, using *numerical* algorithm.

$$\zeta_{\mathbb{Q}(\zeta_5)}(2) \stackrel{?}{=} -\frac{2^3 \sqrt{5}}{3 \cdot 5^4} \pi^4 \det \begin{pmatrix} \mathscr{L}_2(\zeta_5) & \mathscr{L}_2(\zeta_5^2) \\ \mathscr{L}_2(\zeta_5^2) & \mathscr{L}_2(\zeta_5^4) \end{pmatrix} \approx 1.0923496617\dots$$

	Zeta and polylogs		
Status			

- n = 2: Zagier (weak version) Bloch-Suslin ~1981 Goncharov (subtle fix)
- n = 3: ~1993 Goncharov via Li₃ breakthrough
- n = 4: 2018 Goncharov-Rudenko via Q₄ new geometric identity (geometric understanding/reinterpretation of a result of Gangl)

Also known for special classes of field ${\cal F}$

Cyclotomic fields

Goncharov has a vast program which can prove specific m (using Borel's theorem as an important starting point)

Warning

Requires heavy input of currently unknown \mathscr{L}_m -functional equations and identities

Cohomology and constructing canonical classes

Higher-ratios

Explicit reduction

Borel's Theorem

Borel defined regulator from $K\mbox{-theory}$

$$R_m^{\mathrm{bo}} \colon K_{2m-1}(\mathbb{C}) \to \mathbb{R}(m-1) =: \mathbb{R}(2\pi \mathrm{i})^{m-1}$$

Theorem (Borel, 1977)

Consider

$$\phi \colon K_{2m-1}(F) \to \bigoplus_{\sigma_i} K_{2m-1}(\mathbb{C}) \to \mathbb{Z}^{\operatorname{Hom}(F,\mathbb{C})} \otimes \mathbb{R}(m-1)$$

- **1** ϕ is injective (mod torsion),
- **2** image is a lattice Λ_m^F (in the invariants under cx conjugation),

$$\exists \zeta_F(m) \sim_{\mathbb{Q}^{\times}} \sqrt{|\Delta_F|} \pi^{md_{m+1}} \operatorname{covol}(\Lambda_m^F).$$

Strategy: find formula for R_m^{bo} in terms of \mathscr{L}_m .

Fact

 R_m^{bo} arises from certain canonical ('Borel') class $c_{2m-1} \in H^{2m-1}_{\text{cts}}(\text{GL}_m(\mathbb{C}), \mathbb{R}(m-1))$

	gs Canonical classes		
Construction of	c_1		

Represent a class $c \in H^{m-1}_{\mathrm{cts}}(G,\mathbb{R})$ via the cochain $\phi \colon G^m \to \mathbb{R}$.

Fact

$$\phi_1 \colon \operatorname{GL}_1(\mathbb{C})^2 \to \mathbb{R}$$
$$\phi_1(g_1, g_2) = \log |\det(g_1^{-1}g_2)|$$

defines 1-cocycle, and represents c_1 .

Cocycle condition:
$$\log|x| - \log\left|\frac{x}{y}\right| + \log\left|\frac{1}{y}\right| = 0$$

Construction of c_3

On $\operatorname{Conf}_m(n) = \{(v_1, \ldots, v_n) \mid v_i \in \mathbb{C}^m\} / \operatorname{GL}_m$, write $\langle i_1 \cdots i_m \rangle = \det(v_{i_1} \cdots v_{i_m})$. Cross-ratio on $\operatorname{Conf}_4(2)$ is

$$\operatorname{cr}(v_1,\ldots,v_4) = \frac{\langle 13 \rangle \langle 24 \rangle}{\langle 14 \rangle \langle 23 \rangle} = \frac{z_1 - z_3}{z_1 - z_4} \cdot \frac{z_2 - z_4}{z_2 - z_3} \qquad \text{where } z_i \leftrightarrow [v_{i,1}:v_{i,2}] \in \mathbb{P}^1(\mathbb{C})$$

Theorem (Bloch)

For all
$$v \neq \mathbf{0} \in \mathbb{C}^2$$
,
 $\phi_2 : \operatorname{GL}_2(\mathbb{C})^4 \to \mathbb{R}$
 $\phi_2(g_1, \dots, g_4) = \mathscr{L}_2(\operatorname{cr}(g_1v, \dots, g_4v))$

defines 3-cocycle, and represents c_3 .

Cocycle condition corresponds to

Famous 5-term relation

$$\mathscr{L}_2\left([x]-[y]+\left[\frac{y}{x}\right]-\left[\frac{1-y}{1-x}\right]+\left[\frac{x(1-y)}{(1-x)y}\right]\right)=0$$

Zagier's Conjecture for n = 2 follows from Borel's Theorem.

		Canonical classes	
Construct	tion of c_5		

Goncharov defines a (pre-)triple-ratio

$$\operatorname{cr}_{3}(v_{1},\ldots,v_{6}) = \frac{\langle 12\,4\rangle\langle 23\,5\rangle\langle 31\,6\rangle}{\langle 12\,5\rangle\langle 23\,6\rangle\langle 31\,4\rangle}$$

Theorem (Goncharov)

For all
$$v \neq \mathbf{0} \in \mathbb{C}^3$$
,
 $\phi_3 : \operatorname{GL}_3(\mathbb{C})^6 \to \mathbb{R}$
 $\phi_3(g_1, \dots, g_6) = \operatorname{Alt}_6 \mathscr{L}_3(\operatorname{cr}_3(g_1v, \dots, g_6v))$

defines 5-cocycle, and represents c_5 .

Zagier's Conjecture for n = 3 follows from Borel's Theorem.

Cocycle condition:

40-term Li_3 functional equation =7!/6

related 22-term functional equation

Zeta and polylogs

Canonical classes

Higher-ratio

Explicit reduction

22-term and beyond

Theorem (22-term relation, Goncharov)

$$\mathscr{L}_{3}\left(\operatorname{Cyc}_{x,y,z}\left([z] + \left[-\frac{x(yz-z+1)}{xz-x+1}\right] + \left[\frac{yz-z+1}{y(xz-x+1)}\right] - \left[\frac{yz-z+1}{yz(xz-x+1)}\right] + [xz-x+1] - \left[\frac{xz-x+1}{z}\right] + \left[\frac{xz-x+1}{xz}\right]\right) + [-xyz]\right) = 3\mathscr{L}_{3}(1)$$

How to generalise the cross-ratio and triple-ratio?

Naïve guesses fail

Candidate

$$\operatorname{cr}_4(v_1,\ldots,v_8) = \frac{\langle 1235 \rangle \langle 2346 \rangle \langle 3457 \rangle \langle 4518 \rangle}{\langle 1238 \rangle \langle 2345 \rangle \langle 3456 \rangle \langle 4517 \rangle}$$

does not give functional equations for $\mathscr{L}_4!$

Higher ratios and Grassmannian polylogs

m-ratio and Grassmannian polylogs

Conjecture (Existence of *m*-ratio, Goncharov)

For
$$m \ge 2$$
, there exists $\sum_{i} \lambda_i[r_i]$, $r_i \in \mathbb{Q}(\operatorname{Conf}_{2m}(m))$
such that $\phi_m(g_1, \ldots, g_{2m}) = \operatorname{Alt}_{2m} \sum_i \lambda_i \mathscr{L}_m(r_i(g_1v, \ldots, g_{2m}v))$, $\forall v \neq \mathbf{0} \in \mathbb{C}^m$, is a $(2m-1)$ -cocycle and represents the Borel class c_{2m-1} .

Key tool to investigate: Grassmannian polylogs Gr_m .

Theorem (Goncharov)

A single-valued version of Gr_m represents c_{2m-1}

Cocycle condition: $Alt_{2m+1} Gr_m = 0$. Manifest as terms of the symbol (\otimes^m -invariant) depend on 2m - 1 points.

Aomoto and Grassmannian polylogs

Definition (Grassmannian polylog)

 Gr_m is the multivalued analytic function defined by

 $\mathrm{d} \operatorname{Gr}_m(v_1, \ldots, v_{2m}) = \mathrm{Alt}_{2m} \mathcal{A}(v_1, \ldots, v_m \mid v_{m+1}, \ldots, v_{2m}) \cdot \mathrm{d} \log \langle m+1, \ldots, 2m \rangle$ where $\mathcal{A}(v_1, \ldots, v_m \mid w_1, \ldots, w_m)$ is geometrically defined Aomoto polylogarithm.

Goal: Rewrite Gr_m in terms of \mathscr{L}_m .

- Problem: An obstruction exists (non-zero motivic cobracket), meaning this is impossible (for $m \ge 4$).
 - Fix: Can modify Gr_m by trivial coboundary terms depending on $\leq 2m-1$ points. Find trivial coboundary correction which kills obstruction.

Goncharov already gave correction in weight 4:

Alt₈ $I_{3,1}(cr(34|2567), cr(67|1345))$,

with projected cross-ratio $\operatorname{cr}(ab|cdef) = \frac{\langle ab \, ce \rangle}{\langle ab \, cf \rangle} \frac{\langle ab \, df \rangle}{\langle ab \, ce \rangle}$ defined on $\operatorname{Conf}_8(4)$.

Explicit reduction of Gr_4 and a 4-ratio

Higher-ratios

$I_{3,1}$ and ho-coordinates

Definition $(I_{3,1})$

 $I_{3,1}$ multiple polylog is defined by

$$I_{3,1}(x,y) = \operatorname{Li}_{3,1}\left(\frac{y}{x}, \frac{1}{y}\right) = \sum_{0 \le n \le m} \frac{y^{n-m} x^{-m}}{n^3 m}$$

Definition (ρ -coordinates)

Coordinates on $Conf_8(4)$

$$\rho_i = \underbrace{\rho_{i,i+1,i+2}^{7,8}}_{\text{mod } 6} = \frac{\langle i, i+1, i+2, 7 \rangle}{\langle i, i+1, i+2, 8 \rangle}$$

Shorthand $\rho_{i,j} = \rho_i - \rho_j$

Higher-ratios

Explicit reduction

Reduction of Gr_4

Theorem (CGR, 2019)

Modulo products

$$\frac{7}{144} \operatorname{Gr}_4 = \operatorname{Alt}_8 \left[I_{3,1} \left(\frac{\rho_{1,2}\rho_{3,4}}{\rho_{3,2}\rho_{1,4}}, \frac{\rho_1}{\rho_{1,4}} \right) + 2I_{3,1} \left(\frac{\rho_{1,2}}{\rho_1}, \frac{\rho_{3,2}}{\rho_{3,4}} \right) + 6\operatorname{Li}_4 \left(\frac{\rho_1\rho_{3,2}}{\rho_{1,2}\rho_{3,4}} \right) \right].$$

Proof.

Found with computer assistance. Explicit calculation of the symbol (\otimes^{m} -invariant) by hand.

Makes explicit first step of Goncharov-Rudenko.

Remark

There is some structure in this reduction.

(Cyclic symmetry, cross-ratio-like structure in ho_i and $0,\infty$)

Higher-ratios

Explicit reduction

Behaviour of $I_{3,1}$

Heuristic: modulo Li_4 terms $I_{3,1}(x,y) \sim \operatorname{Li}_2(x) \wedge \operatorname{Li}_2(y)$.

Reason: Motivic cobracket of $I_{3,1}$, leads to obstruction for $Gr_4 = Li_4$'s.

Results: Explicit expressions (by Zagier, and by Gangl, ~ 12 terms) for

 $I_{3,1}(x,y) + I_{3,1}(x^{-1},y) = \text{Li}_4$'s, $I_{3,1}(x,y) + I_{3,1}(1-x,y) = \text{Li}_4$'s.

Theorem (Gangl, 2016)

There exists $f_i(x, y, z)$ rational functions and $c_i \in \mathbb{Q}$, so that modulo products

$$I_{3,1}\left(z, [x] + [y] + \left[\frac{1-x}{1-xy}\right] + [1-xy] + \left[\frac{1-y}{1-xy}\right]\right)$$
$$= \sum_{i=1}^{122} c_i \operatorname{Li}_4(f_i(x, y, z)) \eqqcolon V(z, [x, y])$$

Found with computer assistance. Goncharov-Rudenko have a geometric derivation.

Gr_4 to Li_4 's

Theorem (Reduction of Gr_4 , CGR, 2019)

$$\begin{split} &\frac{7}{44} \operatorname{Gr}_4 + 2 \operatorname{Alt}_8 I_{3,1}^{\operatorname{sym}}(\operatorname{cr}(34|2567), \operatorname{cr}(67|1345)) = \\ &\operatorname{Alt}_8 \left\{ -V\left(\frac{\rho_4}{\rho_1}; \left[\frac{\rho_{4,2}}{\rho_{4,1}}; \frac{\rho_{4,1}}{\rho_{4,3}}\right] - \left[\operatorname{cr}(43|2685); \operatorname{cr}(48|7653)\right] \right. \\ &+ \frac{1}{4} \left[\operatorname{cr}(43|1256); \operatorname{cr}(43|1268)\right] - \frac{1}{12} \left[\operatorname{cr}(43|1256); \operatorname{cr}(42|1365)\right] \right] \\ &+ V\left(\frac{\rho_2}{\rho_1}; - \left[\operatorname{cr}(43|2685; \operatorname{cr}(48|7653)\right] + \left[\operatorname{cr}(48|7235; \operatorname{cr}(48|7263)\right] \right. \\ &+ \left. \frac{1}{2} \left[\operatorname{cr}(46|5238; 43|2568)\right] \right) \\ &+ 6 \operatorname{Li}_4 \left(\frac{\rho_1 \rho_{3,2}}{\rho_{1,2} \rho_{3,4}}\right) + \operatorname{Li}_4 \text{ 's from } I_{3,1}\text{-symmetrising} \right\}. \end{split}$$

Corollary (Explicit 4-ratio)

Obtain a new Li₄ functional equation with 1775 S_8 -orbits. Computer assistance gives 368 S_8 orbits. Candidate for $K_7(F)$ via generators and relations.

Higher weight

Theorem (Grassmann reduction, CGR, 2019)

One term expression under Alt_{2m} for Gr_m via 'iterated integrals' using generalised ρ -coordinates.

Theorem (Aomoto reduction, CGR, 2021/22)

One term expression under $Alt_{m,m}$ for the Aomoto $\mathcal{A}_{m-1}(v_1, \ldots, v_m \mid w_1, \ldots, w_m)$ polylog via 'iterated integrals' using generalised ρ -coordinates.

Theorem (Gr_5 reduction and coboundary, CGR, 2019)

Expression for Gr_5 in terms of four $I_{4,1}$ terms and $2 Li_5$, under Alt_{10} . Coboundary correction term expressed via two $I_{4,1}$ terms.

This is a starting point for reduction in weight ≥ 5 . (In progress.)

Higher-ratios

Explicit reduction

Summary

- Zagier's polylogarithm conjecture on $\zeta_F(m)$
 - Statement and progress
- Goncharov's program for proving $\zeta_F(m)$
 - Conjecture: existence of *m*-ratios?
 - \blacksquare Borel's theorem and canonical classes c_{2m-1}
 - Construction of *c*₁, *c*₃, *c*₅
- Expressions for Grassmannian polylogs
- Explicit reduction of Gr_4
 - Explicit expression for 4-ratio
 - \blacksquare New functional equations for ${\rm Li}_4$
- Progress in weight 5