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Dedekind zeta function
Throughout: F is a number field, OF the ring of integers
Definition
The Dedekind zeta function is

ζF (s) B
∑

(0),a⊂OF
a non-zero ideal

∣∣norm of a︷   ︸︸   ︷
OF /a

∣∣−s , Re(s) > 1

� Meromorphic on C, simple pole at s = 1 � For F = Q, get the Riemann zeta
Theorem (Analytic class-number(-less) formula)

Ress=1 ζF (s) ∼Q×

√
|∆F |πr2 RegF ,

∆F is the discriminant,
r2 is number of pairs of complex embeddings,
RegF is a determinant of logarithms of units of F . (Mysterious!)

Have ‘ζF (1)’ via logarithms. So higher values of ζF (m) should need higher logarithms.
0
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Polylogarithms

Definition (Polylogarithm)

The weight m polylogarithm is
Lim(z) B

∞∑
k=1

zk

km
, |z| < 1

� Li1(z) = − log(1− z) � Analytic continuation via Lim+1(z) =
∫ z

0
Lim(t)dt

t

Definition (Bloch-Wigner-Ramakrishnan-Zagier polylogarithm)

A single-valued version of the polylogarithm is

Lm(z) =
{

Re
Im

(m−1∑
k=0

2kBk
k! Lim−k(z) logk(z)

)
m odd,
m even

� Bk the k-th Bernoulli number

� L 1(z) = − log |1− z| � L 2(z) = Im(Li2(z) + log(1− z) log |z|)
� L 3(z) = Re(Li3(z)− Li2(z) log |z| − 1

3 log(1− z) log2 |z|)
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Zagier’s polylogarithm conjecture

Write dm = order of vanishing of ζF (1−m) =
{
r1 + r2 m odd
r2 m even

Order embeddings σi : F → C, so σi = σi+r1+r2 , (r1 real, r2 pairs cx embeddings)

Extend Lm, σi to ‘formal linear combinations’ in Z[F×] by linearity

Conjecture (Zagier)

Let m ≥ 2. There exists y1, . . . , ydm ∈ Z[F×] so that

ζF (m) ∼Q×

√
|∆F |πmdm+1 det

(
Lm(σi(yj))

)dm

i,j=1
.

Recipe to find (candidate) yi inductively, using numerical algorithm.

ζQ(ζ5)(2) ?= −23√5
3 · 54 π

4 det
(

L 2(ζ5) L 2(ζ2
5 )

L 2(ζ2
5 ) L 2(ζ4

5 )

)
≈ 1.0923496617 . . .
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Status

n = 2: Zagier (weak version)
Bloch-Suslin ∼1981
Goncharov (subtle fix)

n = 3: ∼1993 Goncharov via Li3 breakthrough

n = 4: 2018 Goncharov-Rudenko via Q4 new geometric identity
(geometric understanding/reinterpretation of a result of Gangl)

Also known for special classes of field F

Cyclotomic fields

Goncharov has a vast program which can prove specific m
(using Borel’s theorem as an important starting point)

Warning
Requires heavy input of currently unknown Lm-functional equations and identities
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Borel’s Theorem
Borel defined regulator from K-theory

Rbo
m : K2m−1(C)→ R(m− 1) C R(2πi)m−1

Theorem (Borel, 1977)

Consider
φ : K2m−1(F )→

⊕
σi

K2m−1(C)→ ZHom(F,C) ⊗ R(m− 1)

1 φ is injective (mod torsion),

2 image is a lattice ΛFm (in the invariants under cx conjugation),

3 ζF (m) ∼Q×
√
|∆F |πmdm+1 covol(ΛFm) .

Strategy: find formula for Rbo
m in terms of Lm.

Fact
Rbo
m arises from certain canonical (‘Borel’) class c2m−1 ∈ H2m−1

cts (GLm(C),R(m− 1))
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Construction of c1

Represent a class c ∈ Hm−1
cts (G,R) via the cochain φ : Gm → R.

Fact

φ1 : GL1(C)2 → R
φ1(g1, g2) = log|det(g−1

1 g2)|

defines 1-cocycle, and represents c1.

Cocycle condition: log|x| − log
∣∣∣∣xy
∣∣∣∣+ log

∣∣∣∣1y
∣∣∣∣ = 0
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Construction of c3

On Confm(n) = {(v1, . . . , vn) | vi ∈ Cm}
/

GLm, write 〈i1 · · · im〉 = det(vi1 · · · vim).
Cross-ratio on Conf4(2) is

cr(v1, . . . , v4) = 〈13〉〈24〉
〈14〉〈23〉 = z1 − z3

z1 − z4
· z2 − z4
z2 − z3

where zi ↔ [vi,1 : vi,2] ∈ P1(C)

Theorem (Bloch)

For all v , 0 ∈ C2,
φ2 : GL2(C)4 → R
φ2(g1, . . . , g4) = L 2(cr(g1v, . . . , g4v))

defines 3-cocycle, and represents c3.

Cocycle condition corresponds to
Famous 5-term relation

L 2

(
[x]− [y] +

[
y

x

]
−
[1− y

1− x

]
+
[
x(1− y)
(1− x)y

])
= 0

Zagier’s Conjecture for n = 2 follows from Borel’s Theorem. 11 / 24
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Construction of c5

Goncharov defines a (pre-)triple-ratio

cr3(v1, . . . , v6) = 〈12 4〉〈23 5〉〈31 6〉
〈12 5〉〈23 6〉〈31 4〉

Theorem (Goncharov)

For all v , 0 ∈ C3,
φ3 : GL3(C)6 → R
φ3(g1, . . . , g6) = Alt6 L 3(cr3(g1v, . . . , g6v))

defines 5-cocycle, and represents c5.

Zagier’s Conjecture for n = 3 follows from Borel’s Theorem.
Cocycle condition:
� 840︸︷︷︸

=7!/6

-term Li3 functional equation � related 22-term functional equation
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22-term and beyond

Theorem (22-term relation, Goncharov)

L 3

(
Cycx,y,z

(
[z] +

[
−x(yz − z + 1)

xz − x+ 1

]
+
[
yz − z + 1

y(xz − x+ 1)

]
−
[

yz − z + 1
yz(xz − x+ 1)

]

+ [xz − x+ 1]−
[
xz − x+ 1

z

]
+
[
xz − x+ 1

xz

])
+ [−xyz]

)
= 3 L 3(1)

How to generalise the cross-ratio and triple-ratio?

Naïve guesses fail
Candidate

cr4(v1, . . . , v8) = 〈123 5〉〈234 6〉〈345 7〉〈451 8〉
〈123 8〉〈234 5〉〈345 6〉〈451 7〉

does not give functional equations for L 4!
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m-ratio and Grassmannian polylogs

Conjecture (Existence of m-ratio, Goncharov)

For m ≥ 2, there exists ∑
i

λi[ri] , ri ∈ Q(Conf2m(m))

such that φm(g1, . . . , g2m) = Alt2m
∑
i λi Lm(ri(g1v, . . . , g2mv)), ∀v , 0 ∈ Cm, is a

(2m− 1)-cocycle and represents the Borel class c2m−1.

Key tool to investigate: Grassmannian polylogs Grm.

Theorem (Goncharov)

A single-valued version of Grm represents c2m−1

Cocycle condition: Alt2m+1 Grm = 0.
Manifest as terms of the symbol (⊗m-invariant) depend on 2m− 1 points.
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Aomoto and Grassmannian polylogs

Definition (Grassmannian polylog)

Grm is the multivalued analytic function defined by

d Grm(v1, . . . , v2m) = Alt2mA(v1, . . . , vm | vm+1, . . . , v2m) · d log〈m+ 1, . . . , 2m〉

where A(v1, . . . , vm | w1, . . . , wm) is geometrically defined Aomoto polylogarithm.






































































































A(v1, v2, v3 | w1, w2, w3)

=
∫

∆
d log

(
w2 · x
w1 · x

)
∧ d log

(
w3 · x
w1 · x

)
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Reduction of Grm

Goal: Rewrite Grm in terms of Lm.

Problem: An obstruction exists (non-zero motivic cobracket), meaning this
is impossible (for m ≥ 4).

Fix: Can modify Grm by trivial coboundary terms depending on
≤ 2m− 1 points. Find trivial coboundary correction which kills
obstruction.

Goncharov already gave correction in weight 4:

Alt8 I3,1(cr(34|2567), cr(67|1345)) ,

with projected cross-ratio cr(ab|cdef) = 〈ab ce〉
〈ab cf〉

〈ab df〉
〈ab de〉

defined on Conf8(4).
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Explicit reduction of Gr4 and a 4-ratio
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I3,1 and ρ-coordinates

Definition (I3,1)

I3,1 multiple polylog is defined by

I3,1(x, y) = Li3,1
(y
x
,

1
y

)
=

∑
0<n<m

yn−mx−m

n3m

Definition (ρ-coordinates)

Coordinates on Conf8(4)

ρi = ρ7,8
i,i+1,i+2︸        ︷︷        ︸
mod 6

= 〈i, i+ 1, i+ 2, 7〉
〈i, i+ 1, i+ 2, 8〉

Shorthand ρi,j = ρi − ρj
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Reduction of Gr4

Theorem (CGR, 2019)

Modulo products
7

144 Gr4 = Alt8
[
I3,1

(ρ1,2ρ3,4
ρ3,2ρ1,4

,
ρ1
ρ1,4

)
+ 2I3,1

(ρ1,2
ρ1

,
ρ3,2
ρ3,4

)
+ 6 Li4

( ρ1ρ3,2
ρ1,2ρ3,4

)]
.

Proof.
Found with computer assistance. Explicit calculation of the symbol (⊗m-invariant) by
hand. �

Makes explicit first step of Goncharov-Rudenko.

Remark
There is some structure in this reduction.
(Cyclic symmetry, cross-ratio-like structure in ρiand 0,∞)
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Behaviour of I3,1

Heuristic: modulo Li4 terms I3,1(x, y) ∼ Li2(x) ∧ Li2(y) .

Reason: Motivic cobracket of I3,1, leads to obstruction for Gr4 = Li4’s.

Results: Explicit expressions (by Zagier, and by Gangl, ∼ 12 terms) for

I3,1(x, y) + I3,1(x−1, y) = Li4’s , I3,1(x, y) + I3,1(1− x, y) = Li4’s .

Theorem (Gangl, 2016)

There exists fi(x, y, z) rational functions and ci ∈ Q, so that modulo products

I3,1
(
z, [x] + [y] +

[ 1− x
1− xy

]
+ [1− xy] +

[ 1− y
1− xy

])
=

122∑
i=1

ci Li4(fi(x, y, z)) C V (z, [x, y]) .

Found with computer assistance. Goncharov-Rudenko have a geometric derivation.
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Gr4 to Li4’s
Theorem (Reduction of Gr4, CGR, 2019)

7
144 Gr4 +2 Alt8 I

sym
3,1 (cr(34|2567), cr(67|1345)) =

Alt8

{
− V

(ρ4

ρ1
;
[ρ4,2

ρ4,1
; ρ4,1

ρ4,3

]
− [cr(43|2685); cr(48|7653)]

+ 1
4 [cr(43|1256); cr(43|1268)]− 1

12 [cr(43|1256); cr(42|1365)]
)

+ V
(ρ2

ρ1
; − [cr(43|2685; cr(48|7653)] + [cr(48|7235; cr(48|7263)]

+ 1
2 [cr(46|5238; 43|2568)]

)
+ 6 Li4

( ρ1ρ3,2

ρ1,2ρ3,4

)
+ Li4’s from I3,1-symmetrising

}
.

Corollary (Explicit 4-ratio)

Obtain a new Li4 functional equation with 1775 S8-orbits. Computer assistance gives
368 S8 orbits. Candidate for K7(F ) via generators and relations.
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Higher weight

Theorem (Grassmann reduction, CGR, 2019)

One term expression under Alt2m for Grm via ‘iterated integrals’ using generalised
ρ-coordinates.

Theorem (Aomoto reduction, CGR, 2021/22)

One term expression under Altm,m for the Aomoto Am−1(v1, . . . , vm | w1, . . . , wm)
polylog via ‘iterated integrals’ using generalised ρ-coordinates.

Theorem (Gr5 reduction and coboundary, CGR, 2019)

Expression for Gr5 in terms of four I4,1 terms and 2 Li5, under Alt10.
Coboundary correction term expressed via two I4,1 terms.

This is a starting point for reduction in weight ≥ 5. (In progress.)
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Summary

Zagier’s polylogarithm conjecture on ζF (m)
Statement and progress

Goncharov’s program for proving ζF (m)
Conjecture: existence of m-ratios?

Borel’s theorem and canonical classes c2m−1

Construction of c1, c3, c5

Expressions for Grassmannian polylogs

Explicit reduction of Gr4
Explicit expression for 4-ratio

New functional equations for Li4

Progress in weight 5
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