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Introduction, definitions and motivation




Definitions
Riemann zeta values

Definition (Riemann zeta function)

The Riemann zeta function is
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Euler (1730's)
The following holds:
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where S°5%° By &y i= £ defines the Bernoulli number By.



Definitions

Questions about ((n)

m What is known about ((3)?

m No evaluation known, numerically it seems ((3)773 ¢ Q
m Know that ((3) ¢ Q (Apéry, 1978)

m What is known about ((5)?

m At least one of ((5),((7),¢(9),¢(11) irrational. (Zudilin, further work by Ball, Rivoal)
(But which ones?)

To try to understand ((n), fit it into a (bigger) algebraic structure



Definitions
Multiple zeta values (MZV's)

The multiple zeta value ((k1, ko, ..., kq) is defined by

1
C(k1,ka ... kg) = > B

kq
1<ny<ng<--<ng "1 To" = Ty

m Convergence: kg > 1

m The weight is k1 + - - - + kg, the depth is d

Product

¢(a)¢(b) = ¢(a,b) + (b, a) + ((a +b)



Definitions

Appearances

Appears in many areas

m Vassiliev knot invariants

m Dirichlet eigenvalues of regular polygons

Scattering amplitudes in high-energy physics

m Number theory



Algebraic properties



Algebraic properties
Relations

MZV's satisfy many relations

27T4n
n repetitions
.. 5197
iﬂ%;:nC(m, k) =¢(n) 280(3,9) +150C(5,7) +168¢(7,5) = ~--¢(12)
k>1

Dimensions
By eliminating linearly dependent elements (numerically, via LLL), we find candidate
dimensions

weight w ‘ 1
d = dimg | 0

2 3 4 5 6 7 8 9 10 11 12
1112 2 3 4 5 7 9 12

Conjecture: dp = dj_9 + di_s3.



Algebraic properties
Stuffle product

Multiply series

(a,b)¢(e) = Y - bZ

0<i<y ‘7 0<k

(T ey ey ey ey )

O<i<j<k O<i<k<y O<k<i<j O<i<j=k 0<i=k<j
= ¢(a,b,¢) + C(a,,b) + C(e,a,b) + C(a, b+ ¢) + C(a + c,b)

More formally
Definition (Stuffle product)
For words w, v in letters z;, recursively define

ZqW * 2p0 = Zg (W * 2pv) + 2p(2oW * V) + Zg4p(W * V)

This encodes ((n1,...,nq){(m1,...,me) via ((zn, - 2n,) = ((N1,...,nq).
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Algebraic properties

Integral representation

C(nl, .. ,nd) = (—l)d[((); 1’ {O}m—l7 1, {O}nz—l7 e 1, {O}nd_l; 1)

where

dt dt
I($0;$1,---,$N;93N+1):
0<ty<--<tny<l 1 — T1 tn — Tn

Proof idea: expand geometric series

dt; dt s dt
/ P22 Z / t?lth
O<ti<ta<1l 1 — 11 to 0<t1<ta<1 to

ni=1
(e} tgl,lfl [e.e] 1
= dty = — =((2)
nlzzl /O<t2<1 ni mz::1 %
Corollary (Duality)
C(na,...,ng) ~ 10m~1...10na~1 <’*0**—1It> 10™ 1. 10 & C(my, . .., me)
<>
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Algebraic properties

Shuffle product

Multiply integrals for ((2)((2)

/ dt; dts / ds; dso . dt; dtg dsyp dss

O<ti<to<l 1 —1t1 f2  Jo<si<so<1 1 — 81 82 shuffles 1 — 11 t2 1 — 51 89

4 dty dty dis diy 2/ dt; dty dts diy
O<ti<to<ts<ts L =111 —t2 t3 14 O<ti<ta<ts<ts L —11 T2 1 —1t3 14

— 4¢(1,3) +2((2.2)

More formally

Definition (Shuffle product)

For words w, v in letters eg, e1, recursively define

e;w LW e;v = ej(w W e;v) + e;(e;w LWL v)

This encodes ((n1,...,nq)¢(m1,...,me) via (e, ---€i,) = £I1(0;€5,,...,€i,;1).
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Algebraic properties

Double shuffle relations

Compare product structres

The shuffle- and stuffle-product give two different algebra structures on MZV's!

Example

‘

20(2,2) +((4) = C(2)¢(2) = 4¢(1,3) +2¢(2,2) = ¢(1,3) = 1¢(4)

Allow regularisation ¢(1) = T (a formal object); can extend x*, LU

Conjecture

Comparing ¢(k)((1) via shuffle product and stuffle gives all MZV relations.

Warning
m Need regularisation to get ((1,2) = ((3)

m Difficult to deduce given relations (need nice structure, or big linear algebra)
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Algebraic properties
Double shuffle relations for double zetas

In weight &, the shuffle and stuffle product give double zeta relations

C(@)e(b) = C(a,b) + C(b, @) = C(K)
a)t) = Y [(2: i) - (}; - })]w, 9

r4+s=k

Introduce generating series

P(X,Y)= ) ((r)¢(s)X 1y}

r+s=k
Z(X,Y)= Y ((rsX 7 yst
r4+s=k
Then we get
xk-1 _ yk-1

Z(X,Y)+2(Y, X) =P(X,Y) — (k) ——

Z(X+Y,Y)+ Z(X +Y,X) = P(X,Y)
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Modular forms relations

Modular forms connections

Recall Eisenstein series (in some normalisation):

1 / 1 e
Gr(z) = = Z —— = C(k) + Z or(n)q"

Relations
Z €aGo(2)Gr—a(2) = c0Gi(2)
give relations for zetas
> caC(a)¢(k — a) = co¢(a)

by taking constant term.

(More interesting relations from cusp forms!)
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Modular forms relations
Period polynomials

Given a cusp form f € Sy (SLa(Z)), consider the period polynomial

/ FOYP2(X)Y — t)224ds
0

zw:ll n( >X2k 2— nyn,. (f)
n=0

where the r-th period is

Tn(f):/ooof(it)tndt, 0<n<2k—-2

Up to multiplying by a single (transcendental) number, the Xe"Y V" part is in
Q[X,Y]. Similarly the X°ddy°dd part.
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Modular forms relations
Eichler-Shimura

Matrix v = (2 %) € (P)SL,(Z) acts on homogeneous polynomials f(X,Y’) of degree k
via

(P|)(X,Y) = (cX +dY)FP(aX +bY,cX +dY)

Period polynomial subspace

Since [3°°+ [, =0and [} + [L + [ = 0, period polynomials P = r(f)(X,Y)
have special properties

P+Plg=0 S
P+Ply+Plg2=0 U= (

Theorem (Eichler-Shimura, very rough)

Period polynomials of degree k are isomorphic to cusp forms of weight k
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Modular forms relations
Double shuffle, revisited

Double-zeta double shuffle relations are
Z(X+Y,Y)+ Z(X+Y,X) - Z(X,Y) - Z(Y,X) — ((k)X—:Y =0

Can construct general solutions (realisations, with ((k) — 0) to these relations via
Z(X,)Y)=AX)Y) - AX, X -Y)+ AY,Y — X)

for A(X,Y) any polynomial even with respect to Y. Can use ideas like this to connect
to period polynomials.

Theorem (Gangl-Kaneko-Zagier, 2006)

Let f € Sw4+2(SLa(Z)), with (even part) of period polynomial Pr(X,Y’), and define a,
by w
Y a XYV =Pi(X+Y,X).

r=0
Then

Zarr' —r)I(r+1l,w+1—r)ecQf(w+2)

even
19/22



Modular forms relations
Examples

Weight 12, have one degree 10 period polynomial

Py(X,Y)=-X%Y? 4+ 3X°%V* - 3x*V6 4+ Xx?Y®
Pi(X +Y,X) ==8X"7° - 28X5Y* — 38X%°7° — 25X1Y5 — 837" — X2y

197
Relation:  — 28 - 4161C(7, 5) — 25 - 4161 (5, 7) — 2181¢(3,9) = —Al5! %g(u)

Weight 16, only one degree 14 period polynomial

Py(X,Y) = —2X"2Y2 + 7X107* — 11X%Y° 4 11X6Y® — 7X*Y1!0 4 2x2y 12
Pr(X 4+Y,X) ~ —132X107* — 675X8Y°® — 686 X°Y® — 125X 4Y10 — 2X Y12 4 xoddyoddg

Relation: — 2-21121¢(3,13) — 125 - 41101¢(5, 11) — 686 - 6181¢(7,9)

— 675 - 6181¢(9,7) — 132 - 41101¢(11,5) = —6!8! - %g(m



Modular forms relations
Propagation of modular relations

Theorem (C-Keilthy, 20227, Schematic)

Following evaluation holds modulo products

2,...,2 repeated a times

—~
c({2%,4,{2}") = 4(-1)"|~((2a +2,2b+ 2) = ((2a + 3,2b + 1)

2n+3 o .
. 2n+3—j 2n+3—j . .
j—4—2n _ —
+].Z:12 (( 2% + 1 ) ( 2a + 1 >><(J’2n+4 ])]

Corollary

Modulo products,

gc({Q}i, 4, {2} = 4(—-1)"¢(2a + 1,2n — 2a + 3)..

So the modular relations propagate to ((2,...,2,4,2,...,2).



Modular forms relations

Summary

Definition of multiple zeta values

Appears throughout physics/maths

Integral representation and duality

m Shuffle and stuffle product
m double shuffle relations

m (need for) regularisation

Period polynomials

m Double zeta relations from cusp forms
m Explicit recipe from period polynomials

m Modular relations for ((2,...,2,4,2,...,2)

22/22



