The usefulness of two-one formulas

Is this where most MZV evaluations come from?

Steven Charlton Universität Hamburg

22 March 2023
"My Favourite Problem" session
Geometries and Special Functions

Multiple zeta values, and their relatives

Definition

For $k_1, \ldots, k_d \in \mathbb{Z}_{\geq 1}$, $k_d \geq 2$, define multiple zeta value (MZV)

$$\zeta(k_1, \dots, k_d) = \sum_{0 < n_1 < \dots < n_d} \frac{1}{n_1^{k_1} \cdots n_d^{k_d}},$$

and multiple t value (MtV)

$$t(k_1, \dots, k_d) = \sum_{0 < n_1 < \dots < n_d} \frac{1}{(2n_1 - 1)^{k_1} \cdots (2n_d - 1)^{k_d}}$$

Multiple zeta values, and their relatives

Definition

For $k_1, \ldots, k_d \in \mathbb{Z}_{\geq 1}$, $k_d \geq 2$, define multiple zeta value (MZV)

$$\zeta(k_1,\ldots,k_d) = \sum_{0 < n_1 < \cdots < n_d} \frac{1}{n_1^{k_1} \cdots n_d^{k_d}},$$

and multiple t value (MtV)

$$t(k_1, \dots, k_d) = \sum_{0 < n_1 < \dots < n_d} \frac{1}{(2n_1 - 1)^{k_1} \cdots (2n_d - 1)^{k_d}}$$

Definition (Interpolated versions, Yamamoto)

For $f = \zeta, t$, define

$$f^r(k_1,\ldots,k_d) = \sum_{\circ = '+' \text{ or ','}} r^{\#+' \text{s}} f(k_1 \circ k_2 \circ \cdots \circ k_d)$$

So $\zeta^0=\zeta$, $\zeta^1=\zeta^\star$ (defined as sum with \leq), also interesting is $\zeta^{1/2}$. All variants satisfy stuffle product formulas.

Multiple zeta values, and their relatives

Definition

For $k_1, \ldots, k_d \in \mathbb{Z}_{>1}$, $k_d \geq 2$, define interpolated multiple zeta value (MZV)

$$\zeta^{r}(k_{1},\ldots,k_{d}) = \sum_{0 < n_{1} \leq \cdots \leq n_{d}} \frac{r^{\delta_{n_{1}=n_{2}} + \delta_{n_{2}=n_{3}} + \cdots + \delta_{n_{d-1}=n_{d}}}}{n_{1}^{k_{1}} \cdots n_{d}^{k_{d}}},$$

and multiple t value (MtV)

$$t(k_1, \dots, k_d) = \sum_{0 < n_1 < \dots < n_d} \frac{1}{(2n_1 - 1)^{k_1} \cdots (2n_d - 1)^{k_d}}$$

Definition (Interpolated versions, Yamamoto)

For $f = \zeta, t$, define

$$f^{r}(k_1,\ldots,k_d) = \sum_{\circ = '+' \text{ or } '\cdot '} r^{\#+'\mathsf{s}} f(k_1 \circ k_2 \circ \cdots \circ k_d)$$

So $\zeta^0=\zeta$, $\zeta^1=\zeta^\star$ (defined as sum with \leq), also interesting is $\zeta^{1/2}$. All variants satisfy stuffle product formulas.

Many special evaluations . . .

Theorem (Zagier, 2012)

$$\zeta(\overbrace{2,\ldots,2}^{a},3,\overbrace{2,\ldots,2}^{b})$$

$$=2\sum_{r=1}^{a+b+1}(-1)^{r}\left[\binom{2r}{2a+2}-(1-2^{-2r})\binom{2r}{2b+1}\right]\zeta(2r+1)\frac{\pi^{2a+2b+2-2r}}{(2a+2b+2-2r+1)!}$$

Proof Idea: Generating series of LHS is hypergeometric $_3F_2'$, generating series of RHS is digammas $\psi(z)\coloneqq \frac{\mathrm{d}}{\mathrm{d}z}\log\Gamma(z)$. Equality by complex analysis wizardry.

Many special evaluations . . .

Theorem (Zagier, 2012)

$$\zeta(\overbrace{2,\ldots,2}^{a},3,\overbrace{2,\ldots,2}^{b})$$

$$=2\sum_{r=1}^{a+b+1}(-1)^{r}\left[\binom{2r}{2a+2}-(1-2^{-2r})\binom{2r}{2b+1}\right]\zeta(2r+1)\frac{\pi^{2a+2b+2-2r}}{(2a+2b+2-2r+1)!}$$

Proof Idea: Generating series of LHS is hypergeometric ${}_3F_2'$, generating series of RHS is digammas $\psi(z) := \frac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z)$. Equality by complex analysis wizardry.

Guided the way for similar results for MtV's

Theorems (Murakami, 2020/21 & C, late 2021)

Explicit formulas

Murakami:
$$t(2,\ldots,2,3,\overbrace{2,\ldots,2}^b) \in \mathbb{Q}[\pi^2,\zeta(3),\zeta(5),\ldots]$$

$$C: \quad t(2,\ldots,2,1,\underbrace{2,\ldots,2}_b) \in \mathbb{Q}[\log(2),\pi^2,\zeta(3),\zeta(5),\ldots]$$

... with important motivic applications

Theorem (Brown, 2012)

A basis for motivic MZV's is given by $\zeta^{\mathfrak{m}}(k_1,\ldots,k_d)$, $k_i \in \{2,3\}$.

Theorem (Murakami, 2020/21)

A basis for motivic MZV's (yes, MZV's) is given by $t^{\mathfrak{m}}(k_1,\ldots,k_d)$, $k_i\in\{2,3\}$.

Theorem (C, 2021)

A basis for motivic MtV's is given by $t^{\mathfrak{m}}(k_1,\ldots,k_d)$, $k_i\in\{1,2\}$, moreover the convergent MtV's $t^{\mathfrak{m}}(k_1,\ldots,k_{d-1},k_d+1)$, $k_i\in\{1,2\}$ are linearly independent.

Proof ideas: Very combinatorial, using motivic coaction and 2-adic properties of the coefficients of $\zeta(2,\ldots,2,3,2,\ldots,2)$, $t(2,\ldots,2,3,2,\ldots,2)$ or $t(2,\ldots,2,1,2,\ldots,2)$ evaluations.

... with important motivic applications

Theorem (Brown, 2012)

A basis for motivic MZV's is given by $\zeta^{\mathfrak{m}}(k_1,\ldots,k_d)$, $k_i \in \{2,3\}$.

Theorem (Murakami, 2020/21)

A basis for motivic MZV's (yes, MZV's) is given by $t^{\mathfrak{m}}(k_1,\ldots,k_d)$, $k_i\in\{2,3\}$.

Theorem (C, 2021)

A basis for motivic MtV's is given by $t^{\mathfrak{m}}(k_1,\ldots,k_d)$, $k_i\in\{1,2\}$, moreover the convergent MtV's $t^{\mathfrak{m}}(k_1,\ldots,k_{d-1},k_d+1)$, $k_i\in\{1,2\}$ are linearly independent.

Proof ideas: Very combinatorial, using motivic coaction and 2-adic properties of the coefficients of $\zeta(2,\ldots,2,3,2,\ldots,2)$, $t(2,\ldots,2,3,2,\ldots,2)$ or $t(2,\ldots,2,1,2,\ldots,2)$ evaluations.

Surprisingly non-trivial part: Proof of the initial ζ or t evaluations.

Theorem (Zhao, 2016 (reformulated))

For any multiple zeta star value

$$\zeta^{\star}(k_1,\ldots,k_d) = (-1)^{\delta_{k_1\neq 1}} 2^b \cdot \zeta^{1/2}(\widetilde{\ell_1-2},\widetilde{\ell_2},\ldots,\widetilde{\ell_b}),$$

where we define (ℓ_1,\ldots,ℓ_b) by decomposing the following into alternating words

$$0; 10^{k_1-1}10^{k_2-1}\cdots 10^{k_d-1}; 1 \quad \leadsto \quad \underbrace{0101\cdots}_{\ell_1} \mid \underbrace{1010\cdots}_{\ell_2} \mid \cdots \mid \underbrace{\cdots 0101}_{\ell_b}$$

Moreover $\widetilde{\ell}_i = \ell_i$ if ℓ_i odd, and $\widetilde{\ell}_i = \overline{\ell_i}$ if ℓ_i even $(\overline{\ell_i}$ denotes factor $\frac{(-1)^{n_i}}{n_i^{\ell_i}}$ in the series).

Theorem (Zhao, 2016 (reformulated))

For any multiple zeta star value

$$\zeta^{\star}(k_1,\ldots,k_d) = (-1)^{\delta_{k_1\neq 1}} 2^b \cdot \zeta^{1/2}(\widetilde{\ell_1-2},\widetilde{\ell_2},\ldots,\widetilde{\ell_b}),$$

where we define (ℓ_1, \ldots, ℓ_b) by decomposing the following into alternating words

$$0; 10^{k_1-1}10^{k_2-1}\cdots 10^{k_d-1}; 1 \quad \leadsto \quad \underbrace{0101\cdots}_{\ell_1} \mid \underbrace{1010\cdots}_{\ell_2} \mid \cdots \mid \underbrace{\cdots 0101}_{\ell_k}$$

Moreover $\widetilde{\ell}_i = \ell_i$ if ℓ_i odd, and $\widetilde{\ell}_i = \overline{\ell_i}$ if ℓ_i even $(\overline{\ell_i}$ denotes factor $\frac{(-1)^{n_i}}{n_i^{\ell_i}}$ in the series).

$$(1,4,6) \leadsto 0; 11000100000; 1 \leadsto \overbrace{0;1}^2 \mid \overbrace{10}^2 \mid \overbrace{0}^1 \mid \overbrace{010}^3 \mid \overbrace{0}^1 \mid \overbrace{0}^1 \mid \overbrace{0}^1 \mid \overbrace{0}^2 \mid \overbrace{0;1}^2$$

Hence

$$\zeta^{\star}(1,4,6) = 2^{7} \zeta^{1/2}(\overline{2},1,3,1,1,1,\overline{2})$$

Theorem (Zhao, 2016 (reformulated))

For any multiple zeta star value

$$\zeta^{\star}(k_1,\ldots,k_d) = (-1)^{\delta_{k_1\neq 1}} 2^b \cdot \zeta^{1/2}(\widetilde{\ell_1-2},\widetilde{\ell_2},\ldots,\widetilde{\ell_b}),$$

where we define (ℓ_1,\ldots,ℓ_b) by decomposing the following into alternating words

$$0; 10^{k_1-1}10^{k_2-1}\cdots 10^{k_d-1}; 1 \quad \leadsto \quad \underbrace{0101\cdots}_{\ell_1} \mid \underbrace{1010\cdots}_{\ell_2} \mid \cdots \mid \underbrace{\cdots 0101}_{\ell_b}$$

Moreover $\widetilde{\ell}_i = \ell_i$ if ℓ_i odd, and $\widetilde{\ell}_i = \overline{\ell_i}$ if ℓ_i even $(\overline{\ell_i}$ denotes factor $\frac{(-1)^{n_i}}{n_i^{\ell_i}}$ in the series).

Upshot:

 $2, \ldots, 2$, with a repeats

$$\zeta(\{2\}^a,3,\{2\}^b) = (-1)^{a+b}\zeta^{\star}(\{2\}^b,3,\{2\}^a) + \text{products} \qquad \text{(stuffle antipode)}$$

$$\zeta^{\star}(\{2\}^b,3,\{2\}^a) = -4\zeta^{1/2}(2b+1,\overline{2a+2}) = \text{depth 1} \qquad \text{(two-one \& parity theorem)}$$

Directly obtain Zagier's evaluation.

Theorem (Zhao, 2016 (reformulated))

For any multiple zeta star value

$$\zeta^{\star}(k_1,\ldots,k_d) = (-1)^{\delta_{k_1\neq 1}} 2^b \cdot \zeta^{1/2}(\widetilde{\ell_1-2},\widetilde{\ell_2},\ldots,\widetilde{\ell_b}),$$

where we define (ℓ_1,\ldots,ℓ_b) by decomposing the following into alternating words

$$0; 10^{k_1-1}10^{k_2-1}\cdots 10^{k_d-1}; 1 \quad \leadsto \quad \underbrace{0101\cdots}_{\ell_1} \mid \underbrace{1010\cdots}_{\ell_2} \mid \cdots \mid \underbrace{\cdots 0101}_{\ell_b}$$

Moreover $\widetilde{\ell}_i = \ell_i$ if ℓ_i odd, and $\widetilde{\ell}_i = \overline{\ell_i}$ if ℓ_i even $(\overline{\ell_i}$ denotes factor $\frac{(-1)^{n_i}}{n_i^{\ell_i}}$ in the series).

Upshot:

 $2, \ldots, 2$, with a repeats

$$\zeta(\widehat{\{2\}^a},3,\{2\}^b) = (-1)^{a+b}\zeta^{\star}(\{2\}^b,3,\{2\}^a) + \text{products}$$
 (stuffle antipode)
$$\zeta^{\star}(\{2\}^b,3,\{2\}^a) = -4\zeta^{1/2}(2b+1,\overline{2a+2}) = \text{depth 1}$$
 (two-one & parity theorem)

Directly obtain Zagier's evaluation.

Ohno & Zudilin investigated cases: $\zeta^{\star}(1,\{2\}^{a_1},\cdots,1,\{2\}^{a_n}) \leftrightarrow \zeta^{1/2}(2a_1+1,\ldots,2a_n+1)$

A two-one theorem for $t^{\star} \mapsto t^{1/2}$

Theorem (Li-Yan, 2022 (reformulated))

For any multiple t star value

$$t^{\star}(k_1,\ldots,k_d) = (-1)^{\delta_{k_1 \neq 1}} 2^{b-1} \cdot t^{1/2} (\stackrel{\longleftarrow}{\ell_1 - 1}, \stackrel{\longleftarrow}{\ell_2}, \ldots, \stackrel{\longleftarrow}{\ell_b}),$$

where we define (ℓ_1,\ldots,ℓ_b) by decomposing the following into alternating words

$$0; 10^{k_1-1}10^{k_2-1}\cdots 10^{k_d-1}; 1 \quad \leadsto \quad \underbrace{0101\cdots}_{\ell_1} \mid \underbrace{1010\cdots}_{\ell_2} \mid \cdots \mid \underbrace{\cdots 0101}_{\ell_b}$$

Choice of signs $\stackrel{(-)}{\bullet}$, more complicated but direct. Note: $t(\overline{1})=\frac{\pi}{4}.$

A two-one theorem for $t^{\star} \mapsto t^{1/2}$

Theorem (Li-Yan, 2022 (reformulated))

For any multiple t star value

$$t^{\star}(k_1,\ldots,k_d) = (-1)^{\delta_{k_1 \neq 1}} 2^{b-1} \cdot t^{1/2} ((\underbrace{\ell_1 - 1}_{1}, \underbrace{\ell_2}_{2}, \ldots, \underbrace{\ell_b}_{l})),$$

where we define (ℓ_1,\ldots,ℓ_b) by decomposing the following into alternating words

$$0; 10^{k_1-1}10^{k_2-1}\cdots 10^{k_d-1}; 1 \quad \leadsto \quad \underbrace{0101\cdots}_{\ell_1} \mid \underbrace{1010\cdots}_{\ell_2} \mid \cdots \mid \underbrace{\cdots 0101}_{\ell_b}$$

Choice of signs $\stackrel{(-)}{\bullet}$, more complicated but direct. Note: $t(\overline{1}) = \frac{\pi}{4}$.

Upshot:

$$2, \ldots, 2$$
, with a repeats

$$t(\{2\}^a,c,\{2\}^b) = (-1)^{a+b}t^{\star}(\{2\}^b,c,\{2\}^a) + \text{products}$$
 (stuffle antipode)
$$t^{\star}(\{2\}^b,1,\{2\}^a) = -\frac{8}{\pi}t^{1/2}(2b+1,\overline{2a+1}) = \text{depth 1}$$

$$t^{\star}(\{2\}^b,3,\{2\}^a) = -\frac{8}{\pi}t^{1/2}(\overline{2b+2},2a+2) = \text{depth 1}$$
 (two-one & parity theorem)

Directly obtain Murakami's evaluation and mine.

A two-one result for $\zeta^{1/2} \mapsto "t^{\star}"$

Theorem-To-Be (In progress, with M. E. Hoffman)

For (k_1, \ldots, k_d) an index (with $k_i \neq 1$) and associated (ℓ_1, \ldots, ℓ_d) obtained by decomposing the following into alternating words

$$\zeta^{1/2}(\ell_1,\ldots,\ell_b) = 2^{2d-1} \sum_{i=1}^d \left(t^*(k_1,\ldots,k_i) - \frac{\zeta^*(k_1,\ldots,k_i)}{2^{k_1+\cdots+k_i}} \right) t(k_d,\ldots,k_{i+1}),$$

Some explicit modifications needed if (m)any $k_i = 1$.

A two-one result for $\zeta^{1/2} \mapsto "t^{\star}"$

Theorem-To-Be (In progress, with M. E. Hoffman)

For (k_1, \ldots, k_d) an index (with $k_i \neq 1$) and associated (ℓ_1, \ldots, ℓ_d) obtained by decomposing the following into alternating words

$$\zeta^{1/2}(\ell_1,\ldots,\ell_b) = 2^{2d-1} \sum_{i=1}^d \left(t^*(k_1,\ldots,k_i) - \frac{\zeta^*(k_1,\ldots,k_i)}{2^{k_1+\cdots+k_i}} \right) t(k_d,\ldots,k_{i+1}),$$

Some explicit modifications needed if (m)any $k_i = 1$.

Consequences:

■ Explicit form of Murakami's MtV Galois descent, e.g.

$$t(3,9) = \tfrac{1}{8}\zeta^{1\!/2}(1,3,1,1,1,1,1,1,1) + \tfrac{1}{4096}\zeta^{\star}(3,9) + \tfrac{1533}{2048}\zeta(3)\zeta(9) - \tfrac{4095}{4096}\zeta(12) \text{ is level } 1.$$

A two-one result for $\zeta^{1/2} \mapsto "t^{\star}"$

Theorem-To-Be (In progress, with M. E. Hoffman)

For (k_1, \ldots, k_d) an index (with $k_i \neq 1$) and associated (ℓ_1, \ldots, ℓ_d) obtained by decomposing the following into alternating words

$$\zeta^{1/2}(\ell_1,\ldots,\ell_b) = 2^{2d-1} \sum_{i=1}^d \left(t^*(k_1,\ldots,k_i) - \frac{\zeta^*(k_1,\ldots,k_i)}{2^{k_1+\cdots+k_i}} \right) t(k_d,\ldots,k_{i+1}),$$

Some explicit modifications needed if (m)any $k_i = 1$.

Consequences:

■ Explicit form of Murakami's MtV Galois descent, e.g. $t(3,9) = \frac{1}{8} \zeta^{1/2}(1,3,1,1,1,1,1,1,1) + \frac{1}{4096} \zeta^{\star}(3,9) + \frac{1533}{2048} \zeta(3)\zeta(9) - \frac{4095}{4096} \zeta(12) \text{ is level } 1.$

Evaluations:

$$\qquad \qquad \zeta^{1\!/2}(3,1,\ldots,1,2) \in \mathbb{Q}[\text{depth 2 MZV's}], \text{ here } \underline{\ell} = (3,\{1\}^n,2) \leftrightsquigarrow \underline{\mathbf{k}} = (2,n+3)$$

Questions

- What other sorts of two-one theorems exist?
 - Partial answer: iterated beta integrals (Hirose and Sato)
- Versions for truncated MZV's/MtV's/...?
- Versions for *q*-analogues?
 - Zhao gave a new proof of MZV version via a *q*-analogue.
- Some version for elliptic MZV's, or higher?
- Can all 'nice' MZV/MtV/... evaluations be understood this way?