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Multiple zeta values, and their relatives

For k1,...,kq € Z>1, kq > 2, define multiple zeta value (MZV)

1
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and multiple ¢ value (M¢V)
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Definition (Interpolated versions, Yamamoto)
For f = (,t, define
fr(klw"vkd): Z T#+'sf(k10k20'~'0kd)
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So ¢ = ¢, ¢! = ¢* (defined as sum with <), also interesting is (/2.
All variants satisfy stuffle product formulas.
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Many special evaluations ...

Theorem (Zagier, 2012)
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Proof Idea: Generating series of LHS is hypergeometric 3 F3, generating series of RHS is
digammas v(z) := <L log I'(z). Equality by complex analysis wizardry.




Many special evaluations ...

Theorem (Zagier, 2012)
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Proof Idea: Generating series of LHS is hypergeometric 3 F3, generating series of RHS is
digammas v(z) := <L log I'(z). Equality by complex analysis wizardry.

Guided the way for similar results for MtV's
Theorems (Murakami, 2020/21 & C, late 2021)

Explicit formulas b

Murakami:  ¢(2,...,2,3,2,...,2) € Q[n2,{(3),¢(5),-. ]
C #2,...,2,1,2,...,2) € Qllog(2), 2, ((3),¢(5), . . ]
~—— Ne——r



.with important motivic applications

Theorem (Brown, 2012)
A basis for motivic MZV's is given by (™ (k1, ..., kaq), ki € {2,3}.

Theorem (Murakami, 2020/21)
A basis for motivic MZV's (yes, MZV's) is given by t"(k1, ..., kq), k; € {2,3}.

Theorem (C, 2021)

A basis for motivic MtV's is given by t™(ki, ..., kaq), ki € {1,2}, moreover the convergent
MtV's t"(k1, ..., ka—1,ka + 1), k; € {1,2} are linearly independent.

Proof ideas: Very combinatorial, using motivic coaction and 2-adic properties of the coefficients
of (2,...,2,3,2,...,2),¢(2,...,2,3,2,...,2) or t(2,...,2,1,2,...,2) evaluations.
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Theorem (Brown, 2012)
A basis for motivic MZV's is given by (™ (k1, ..., kaq), ki € {2,3}.

Theorem (Murakami, 2020/21)
A basis for motivic MZV's (yes, MZV's) is given by t"(k1, ..., kq), k; € {2,3}.

Theorem (C, 2021)

A basis for motivic MtV's is given by t™(ki, ..., kaq), ki € {1,2}, moreover the convergent
MtV's t"(k1, ..., ka—1,ka + 1), k; € {1,2} are linearly independent.

Proof ideas: Very combinatorial, using motivic coaction and 2-adic properties of the coefficients
of (2,...,2,3,2,...,2),¢(2,...,2,3,2,...,2) or t(2,...,2,1,2,...,2) evaluations.

Surprisingly non-trivial part: Proof of the initial ¢ or ¢ evaluations.



Zhao's generalised two-one theorem

Theorem (Zhao, 2016 (reformulated))

For any multiple zeta star value

CH(ky, ... kq) = (=1)%19120 . (023 0, .. 0y,

where we define ({1, . ..,4,) by decomposing the following into alternating words
0; 10k ~110k2=1 ... 10711~ 0101---] 1010+ | ---|---0101
¢ £ ¢
1 b

Moreover {; = {; if {; odd, and {; = 0; if {; even (l; denotes factor =" 1) in the series).
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Zhao's generalised two-one theorem

Theorem (Zhao, 2016 (reformulated))

For any multiple zeta star value

CH(ky, ... kq) = (=1)%19120 . (023 0, .. 0y,

where we define ({1, . ..,4,) by decomposing the following into alternating words
0; 10k ~110k2=1 ... 10711~ 0101---] 1010+ | ---|---0101
¢ £ ¢
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Moreover {; = {; if {; odd, and {; = 0; if {; even (l; denotes factor =" 1) in the series).

Upshot:
2,...,2, with a repeats
A~
¢({2}%,3,{2}°) = (—1)*T°¢*({2}°, 3, {2}*) + products (stuffle antipode)
C*({2}%,3,{2}%) = —4¢"*(2b 4+ 1,2a + 2) = depth 1 (two-one & parity theorem)

Directly obtain Zagier's evaluation.
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For any multiple zeta star value

CH(ky, ... kq) = (=1)%19120 . (023 0, .. 0y,
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Moreover {; = {; if {; odd, and {; = 0; if {; even (l; denotes factor =" 1) in the series).
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Directly obtain Zagier's evaluation.

Ohno & Zudilin investigated cases: ¢*(1,{2}%,---,1,{2}%) < ¢*(2a; + 1,...,2a, + 1)



A two-one theorem for t* —s 72

Theorem (Li-Yan, 2022 (reformulated))

For any multiple t star value

(——) (=) (=)
t*(kla R kd) = (_1)6“#121)_1 : t1/2(él_1a €2 PN éb ) ’

where we define ({1, ...,/0,) by decomposing the following into alternating words
0;10F1—110%2-1...10%"1;1  ~  0101--.]1010---]---].--0101
¢ ) )
1 2 b

Choice of signs 3, more complicated but direct. Note: t(I) = %.
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Theorem (Li-Yan, 2022 (reformulated))

For any multiple t star value
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where we define ({1, ...,/0,) by decomposing the following into alternating words
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1 2 b

Choice of signs 3, more complicated but direct. Note: t(I) = %.

Upshot:
2, 2, with a repeats
A~
t({2}%, ¢, {21%) = (—=1)2T°t*({2}°, ¢, {2}%) + products (stuffle antipode)

t*({2}°,1,{2}%) = —§t1/2(2b +1,2a+ 1) = depth 1
g } (two-one & parity theorem)
t*({21°,3,{2}%) = —=t"7*(2b + 2, 2a + 2) = depth 1
7r

Directly obtain Murakami's evaluation and mine.
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A two-one result for ¢7? — “t*"

Theorem-To-Be (In progress, with M. E. Hoffman)

For (k1,...,kq) an index (with k; # 1) and associated ({1, ..., ¢;) obtained by decomposing
the following into alternating words

1 - * C*(kaakl)
CP (8, ... b)) = 2% 12 (t (K1,... k) — m)t(kd,...,kgﬂ),

Some explicit modifications needed if (m)any k; = 1.



A two-one result for ¢7? — “t*"

Theorem-To-Be (In progress, with M. E. Hoffman)

For (k1,...,kq) an index (with k; # 1) and associated ({1, ..., ¢;) obtained by decomposing
the following into alternating words

1 _ * C*(kla'“aki)
C/Q(elavgb)zzzd lz(t (k17’kl)_W)t(kd7,kl+l),
Some explicit modifications needed if (m)any k; = 1.

Consequences:

m Explicit form of Murakami’s MtV Galois descent, e.g.
£(3,9) = £¢72(1,3,1,1,1,1,1,1,2) + 75:¢*(3,9) + 2333¢(3)¢(9) — 4335¢(12) is level 1.



A two-one result for ¢7? — “t*"

Theorem-To-Be (In progress, with M. E. Hoffman)

For (k1,...,kq) an index (with k; # 1) and associated ({1, ..., ¢;) obtained by decomposing
the following into alternating words

Cl/Q(ela ©oo 7&)) = 22d71 Z (t*(kla coog kl) - M)t(kda caey ki+1) )

okt Tk
Some explicit modifications needed if (m)any k; = 1.

Consequences:
m Explicit form of Murakami’s MtV Galois descent, e.g.

£(3,9) = £¢72(1,3,1,1,1,1,1,1,2) + 75:¢*(3,9) + 2333¢(3)¢(9) — 4335¢(12) is level 1.

Evaluations:
m (L {1372, 31071 {13973, 2) € QU¢(a), ¢(2a),((3a), .. ], here £ en k = ({a}")
m (2(3,1,...,1,2) € Q[depth 2 MZV's], here £ = (3, {1}",2) «» k = (2,1 + 3)
m (2(2,1,...,1,2) € Q[n2,¢(3),¢(5),...], here £ = (2, {1}",2) «w k = (1,1 + 3)



Questions

m What other sorts of two-one theorems exist?
m Partial answer: iterated beta integrals (Hirose and Sato)

m Versions for truncated MZV's/MtV's/...?

m Versions for g-analogues?
m Zhao gave a new proof of MZV version via a g-analogue.

m Some version for elliptic MZV's, or higher?

Can all ‘nice’ MZV/M¢tV/. . . evaluations be understood this way?



