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Abstract
Polylogarithms are a class of special functions which have applications throughout

the mathematics and physics worlds. I will begin by introducing the basis properties of
polylogarithms and some reasons for interest in them, such as their functional equations and
the role they play in Zagier’s polylogarithm conjecture. From here I will turn to Aomoto
polylogarithms, a more general class of functions and explain how they motivate a geometric
view of polylogarithms as configurations of hyperplanes in Pn(C). This approach has been
used by Goncharov to establish Zagier’s conjecture for n = 3.

1 Definitions
Let’s begin with the definition of the order p polylogarithm:

Definition 1 (p-th Polylogarithm). For p ∈ Z>0:

Lip(z) :=
∞∑
n=1

zn

np
, for |z| < 1 .

Notice that Li1(z) = − log(1− z) is just the usual logarithm.
Since d

dt Lip(z) = 1
z Lip−1(z), we can analytically continue Lip(z) to a multivalued holomorphic

function on C \ {0, 1}, via:

Lip(z) =
∫ z

0
Lip−1(t)dt

t

Why might we be interested in these functions? Aside from the fact that they have interesting
mathematical properties on their own, these special functions crop up in a variety of places
throughout mathematics and physics:

For example, in physics:

− As closed form solutions to Fermi-Dirac, and Bose-Einstein distributions
− Conformal Field Theory and Quantum Electrodynamics
− In the computation of Feynman diagram integrals
− And the computation of scattering amplitudes

On the maths side:

− Dilogarithms appear in the computation of volumes of hyperbolic tetrahedra (manifolds)
− Algebraic K-theory
− Cohomology of GLn(C)
− Low dimensional topology in Vassiliev-Kontsevich knot invariants
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− In connection with the values of L-functions, as part of Zagier’s polylogarithm conjecture

I’d like to talk about the part they play in Zagier’s polylogarithm conjecture in a little more
detail, since double scissors congruence groups and the geometric point of view of polylogarithms
has been used by Goncharov to prove the case n = 2, 3.

Recall the Dedekind zeta function of a number field F , defined as:

ζF (s) =
∏

p6=(0)⊂ZF

1
1−N(p)−s .

This converges for Re(s) > 1, and can be extended to a meromorphic function on C with a simple
pole at s = 1. The analytic class number formula gives the residue at this pole as:

lim
s→1

(s− 1)ζF (s) = 2r1(2π)r2hF

wF
√
|DF |

RegF .

The important bit for this talk is RegF , the regulator. Roughly this is the volume for a fundamental
domain for the lattice of units in logarithmic space, and so is a sum of (r1 + r2 − 1)-fold products
of logarithms of elements of F / an (r1 + r2 − 1)-fold determinant of logarithms of elements of F .
So ‘ζF (1)’ is related to order 1-polylogarithms.

Zagier’s polylogarithm conjecture seek to generalise this as follows:

Conjecture 2 (Zagier). There exists y1, . . . , yr(n+1) ∈ Q[F \ {0, 1}] such that:

ζF (n) = πnr(n)D
−1/2
F det [Ln(σi(yj))]1≤i,j≤r(n+1)

where σ1, . . . , σr1 are the real embeddings, and σ1+r1 , . . . , σ1+r1+r2 are each one of the pairs of
complex embeddings. And r(n) = r2 if n odd, r(n) = r1 + r2 if n even.

Extra: [Here Ln(z) is Bloch-Wigner-Ramakrishnan modification of the polylogarithm,
which is explicitly given by Zagier as:

Ln(x) := Rep

 p∑
j=0

2jBj
j! (log |z|)j Lip−j(z)


where Bj is the j-th Bernoulli number, Li0(z) = −1/2 and Rep means Re for p odd and Im
for p even.]

For example, we have:

Example 3. Consider the number field F = Q(
√
−5). Then:

ζF (2) = π2

30
√

20

(
4D(2 +

√
−5) + 3D

(
2 +
√
−5

4

)
+ 20D

(
2 +
√
−5

3

))
where here D is the Bloch-Wigner dilogarithm (another modification of Li(x), although it is
essentially L2(z) from above), defined as:

D(z) := Im(Li2(z)) + arg(1− z) log |z|

This has been proven for n = 2, 3 by Goncharov using a geometric point of view, and there
are some partial results leading to the n = 4 case. Zagier himself proved a slightly weaker version
of his conjecture for n = 2.
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Extra: [Slightly weaker in that the arguments to the dilogs aren’t necessarily in F , but in
F ′/F some extension of F .

The idea is to look at vol(H3/Γ), where Γ = SL2(ZF ). The volume of this quotient is
given by Humbert as |D|3/2 ζF (2)/4π2.

But on the other hand, this space can be triangulated into hyperbolic polyhedra with
vertices in P1(F ), meaning this volume can be written in terms of dilogarithms, as I mentioned
when talking about applications of polylogarithms.]

2 Algebraic Properties
No talk about polylogarithms is complete without saying something about their functional
equations. Understanding the functional equations is one of the mean avenues of exploration of
these functions.

The first such example comes the first property you learn about logarithms:

log(xy) = log(x) + log(y) ,

which can be rewritten as a functional equation for Li1(x).
We have some ‘trivial’ functional equations which hold for all weight polylogarithms, such as

the duplication formula:
Lip(z2) = 2p−1[Lip(z) + Lip(−z)] ,

which can be prove just by looking at the power series expansion of both sides for |z| < 1.
There is also an inversion formula, which in the case p = 2 for simplicity reads:

Li2(1/z) = −Li2(z)− π2/6− 1
2 log2(−z)

A less trivial/more interesting example is the main functional equation for the dilogarithm:

Theorem 4 (Five Term Relation for the Dilogarithm). The following holds:

Li2(x) + Li2(y) + Li2
(

1−x
1−xy

)
+ Li2(1− xy) + Li2

(
1−y

1−xy

)
=

π2

6 − log(x) log(1− x)− log(y) log(1− y) + log
(

1−x
1−xy

)
log
(

1−y
1−xy

)
Proof. A fairly straightforward proof of this is just to differentiate to show this is constant.

One expects to have such non-trivial functional equations for all order polylogarithms, but so
far we know functional equations only up to the 8-log.

Extra: [A functional equation for the trilogarithm discoevered by Goncharov reads:

L3(−xyz) +
∑

cyclic xyz

{
L3(zx− x+ 1) + L3( zx−x+1

zx )− L3( zx−x+1
z ) +

L3( x(yz−z+1)
−(zx−x+1) ) + L3(z) + L3( yz−z+1

y(zx−x+1) )− L3( yz−z+1
yz(zx−x+1) )

}
= 3L3(1) .]

Other areas of interest include special values of polylogarithms and ladders (where powers of
one value are related to each other).
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Extra: [We also have special values for the dilogarithm. Only these few are known. Compare
this with that happens for many other functions where either they have infinitely many
special values which can be easily described, or none.

Li2(0) = 0, Li2(1) = π2

6 , Li2(−1) = −π
2

12 , Li2
( 1

2
)

= π2

12 −
1
2 log2(2),

Li2
(

3−
√

5
2

)
= π2

15 − log2
(

1+
√

5
2

)
, Li2

(
−1+

√
5

2

)
= π2

10 − log2
(

1+
√

5
2

)
,

Li2
(

1−
√

5
2

)
= −π

2

15 + 1
2 log2

(
1+
√

5
2

)
, Li2

(
−1−

√
5

2

)
= −π

2

10 + 1
2 log2

(
1+
√

5
2

)
.

Polylogarithm ladders have deep connections to K-theory. Examples of ladders: if
ρ = (

√
5− 1)/2, then:

Li2(ρ6) = 4 Li2(ρ3) + 3 Li2(ρ2)− 6 Li2(ρ) + 7
30π

2

Li2(ρ12) = 2 Li2(ρ6) + 3 Li2(ρ4) + 4 Li2(ρ3)− 6 Li2(ρ2) + 1
10π

2 .]

3 Aomoto Polylogarithms
I’d now like to introduce a more geometrical point of view of polylogarithms, and this is done by
the Aomoto polylogarithms.

Let L and M be a pair of simplices in n-dimensional projective space Pn(C) over C. Such
a simplex is a collection of n + 1 hyperplanes L = (L0, . . . , Ln). (A face of L is a non-empty
intersection of hyperplanes from L. A pair of simplices is admisslbe if they have no common face
of the same dimension.)

We can take one of these simplices as a region ∆M to integrate over. (Take a n-cycle
representing a generator of H(Pn(C),M).) The other defines us a differential form as follows.
Let the equation of Li be fi = 0 in homogeneous coordinates. then:

ωL = d log(f1/f0)∧ · · · ∧ d log(fn/f0)

Integrating ωL over ∆M gives us the weight n Aomoto polylogarithm:

Λ(L,M) :=
∫

∆M

ωL

Example 5 (Dilogarithm). Aomoto polylogarithms genuinely do generalise classical polyloga-
rithms. If we take L = (Z = 0, X = 0, Y = 0) and M = (X + Y = Z,X = Z, Y = tZ), then
a(L,M) = Li2(t), the dilogarithm. In this case we get:

ωL = d log(X/Z)∧d log(Y/Z) = dx
x
∧ dy
y
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Extra: We the integrate this over the interior of the region ∆M defined by x+ y = 1, x = 1
and y = t. Doing this integral by first integrating wrt to x, an integrating term by term the
power series for log(1− y)/y , we get:∫

∆M

dx
x
∧ dy
y

=
∫ t

0

[∫ 1

1−y

1
xy

dx
]

dy

=
∫ t

0

− log(1− y)
y

dy

=
∫ t

0

[
1
y

∞∑
n=1

yn

n

]
dy

=
∞∑
n=1

tn

n2

=: Li2(t)

Properties of Aomoto Polylogarithms:

Non-degeneracy Λ(L,M) = 0 if L or M is degenerate (lies in a hyperplane). If L, then we get
a repeated term in the differential form, so it goes to 0. If M , then we’re integrating over a
0-volume region, and get 0.

Skew Symmetry Λ(σL,M) = (−1)sgnσΛ(L,M) = Λ(L, σM), for any permutation σ ∈ §n+1.
(Where σL means to permute the order of the hyperplanes in L by σ.) Applying to M will
change the orientation of the simplex, applying to L will change the order of the differential
forms.

Additivity in L For any collection of hyperplanes L0, . . . , Ln+1 the following holds:
n+1∑
i=0

(−1)iΛ(L̂i,M) = 0
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Additivity in M For any collection of hyperplanes M0, . . . ,Mn+1 the following holds:
n+1∑
i=0

(−1)iΛ(L, M̂ i) = 0

(Here L̂i means L0, . . . , L̂i, . . . , Ln+1, missing out Li.) Additivity in M comes from inte-
grating over each region twice with opposite sign. For example when n = 2:

Projective Invariance For any g ∈ PGLn+1(C):

Λ(gL, gM) = Λ(L,M)

Which is just changing variables.

Extra: A reasonable question is how exactly Aomoto and classical relate. Every classical
polylogarithm is an Aomoto polylogarithm integrating the coordinate simplex differential
forms over a special choice of integration simplex. The other way is not so clear cut. For
n = 1, 2, 3 they are the same thing: every Aomoto can be expressed as classical. However
for n ≥ 4 things differ. One way of seeing the results for n = 1, 2, 3 comes from just cutting
up a general configuration and showing is can be written in terms of classical. But for n = 4
there are obstructions which prevent this.

4 Double Scissors Congruence Groups
It’s on these properties above that we model the Double Scissors congruence groups. Conjecturally
this should capture all the functional equations of the Aomoto polylogarithm. We incorporate
the above properties into the definition:

Definition 6 (Double Scissors Congruence Group). For n a positive integer, and F a field, define
the abelian group An(F ) as follows: An(F ) is the free abelian group generated by pairs (L,M)
of admissible n-simplices modulo the following relations:

1) (Non-degeneracy) If either L or M is degenerate then (L,M) = 0.
2) (Skew Symmetry) For every permutation σ ∈ Sn+1, we have (σL,M) = (−1)sgn(σ)(L,M) =

(L, σM).
3) (Left- and right-additivity) For every family of hyperplanes (L0, . . . , Ln+1) and n-simplex

M such that L̂i is admissible for i = 0, 1, . . . , n+ 1, we have:∑
i

(−1)i(L̂i,M) = 0 =
∑
i

(−1)i(M, L̂i)

4) (Projective Invariance) For every g ∈ PGLn+1(F ), we have (gL, gM) = (L,M).

(And A0(F ) = Z.)
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Extra: It’s easy to explicitly define a coproduct on the generic part A0
•(F ), it is given by

the follownig simple formula:

Definition 7 (Generic Part Coproduct). On the generic part A0
n(F ) of An(F ) (where the

hyperplanes are in general position) we can define a coproduct (in terms of its components)
as follows:

νn−k,k:A0
n → A0

n−k ⊗A0
k

is defined by;
(L,M) 7→

∑
I,J

(−1)σ(I,J)(LI | LI ,MJ)⊗ (MJ | LI ,MJ)

Here the sum runs over all I = (0 < i1 < · · · < ik) and J = (0 < j1 < · · · < jn−k).
σ(I, J) = sgn(I, I) sgn(J, J), where I is the complement of I, and sgn(I, I) is the sign of the
permutation (0, 1, . . . , n) 7→ (I, I). I also write LI to mean (li1 , . . . , lik ).

I should also explain the notation (N | L,M). If (L,M) ∈ An(F ), then (N | L,M) ∈
An−1(F ). It means (N ∩ L1, . . . , N ∩Mn). If multiple hyperplanes appear before the bar,
take their overall intersection.

Of more interest is how exactly the coproduct should be defined on all of A•(F ), to turn
this into a Hopf algebra. (There is a product: products of Aomoto polylogarithms can be
written as sums of other single Aomoto polylogarithms, and this carries over to A•(F ).)
There should be a coproduct for all n, but so far we know explicitly how to define it only for
n = 2, 3, and partially for n = 4.

The existence of such a coproduct is important for this following conjecture relating
Double Scissors congruence groups and K-theory:

Conjecture 8. The restricted coproduct induces a complex:

A>0 → A>0 ⊗A>0 → A>0 ⊗A>0 ⊗A>0 → · · ·

whose graded n-piece

An →
n+1⊕
k=1

Ak ⊗An−k → · · ·

provides the isomorphism:

Hi
(n)(A•,Q) ∼= grγnK2n−i(F )Q

where γ is the γ-filtration of K-groups.

What does this have to do with Zagier’s polylogarithm conjecture?
Goncharov’s method was to use this geometrical point of view to give an explicit description for

the regulator rn:K2n−1(C)→ R for n = 2, 3, in terms of dilogs and trilogs respectively. Relating
the double scissor congruence groups / Aomoto polylogarithms to other geometric configurations
and to the Bloch / Goncharov polylogarithm complex.

Given such a description in terms of polylogs, Borel’s theorem would give the result about
ζF (2) or ζF (3):
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Theorem 9 (Borel). For a number field F :

K2n−1(F ) has rank r(n+ 1) =
{
r1 + r2 if n odd
r2 if n even

.

And the image of K2n−1(F ) in Rr(n) under the regulator map is a lattice with co-volume
ζF (m)/πnr(n)

√
|∆F |.
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