ALGEBRA 2 – MICHAELMAS 2015 TUTORIAL 3

- 2) Let $R = (\mathbb{Z}/2)[x]$, and let I be the ideal $(x^2 + 1)_R$ of R.
 - i) Let $f(x) \in R$. Use the division algorithm to prove that $f(x) (ax + b) \in I$ for some $ax + b \in R$. Are a and b unique? Hence list the elements of $(\mathbb{Z}/2)[x]/I$.

Solution: Apply the division algorithm to divide f(x) by $x^2 + 1$. It says we can write

$$f(x) = (x^2 + 1)q(x) + r(x),$$

where $\deg(r) < \deg(x^2 + 1) = 2$. This means r(x) = ax + b for some $a, b \in \mathbb{Z}/2$. Now $f(x) - r(x) = (x^2 + 1)q(x) \in I$, which shows f(x) is equivalent to ax + b. This means every equivalence class has a linear representative.

If also $f(x) - (cx - d) \in I$, then $(ax + b) - (cx + d) \in I$. This means (a - c)x + (b - d) is divisible by $x^2 + 1$, so a - c = b - d = 0. So a and b are unique. The elements of R/I are therefore

$$\overline{0} + I, \ \overline{1} + I, \ x + I, \ (x + \overline{1}) + I$$

- ii) Check the following computations in $(\mathbb{Z}/2)[x]/I$
 - $(\overline{1} + I) + ((x + \overline{1}) + I) = x + I$,
 - $(x+I) \cdot (x+I) = \overline{1} + I.$
- iii) Complete the addition and multiplication tables for $(\mathbb{Z}/2)[x]/I$.

Solution: Continuing on from the calculations above, the addition and multiplication tables are as follows. For notational ease, I write r, rather than r + I.

+	$\overline{0}$	$\overline{1}$	x	$x + \overline{1}$		•	$\overline{0}$	1	x	$x + \overline{1}$
$\overline{0}$	$\overline{0}$	1	x	$x + \overline{1}$		$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	1	$\overline{0}$	$x + \overline{1}$	x	and	$\overline{1}$	$\overline{0}$	$\overline{1}$	x	$x + \overline{1}$
x	x	$x + \overline{1}$	$\overline{0}$	$\overline{1}$		x	$\overline{0}$	x	$\overline{1}$	$x + \overline{1}$
$x + \overline{1}$	$x+\overline{1}$	x	$\overline{1}$	$\overline{0}$		$x + \overline{1}$	$\overline{0}$	$x + \overline{1}$	$x + \overline{1}$	$\overline{0}$

iv) **Extra:** Is $(\mathbb{Z}/2)[x]/I$ a field?

Solution: $(\mathbb{Z}/2)[x]/I$ is not even an integral domain since $(x+\overline{1})+I$ is a zero-divisor. So this definitely cannot be a field.

Remark: Later, this will mean that $(x^2 + \overline{1})_R$ is not a *maximal* ideal. Indeed

$$(x^2 + \overline{1})_R \subsetneq (x + \overline{1})_R \subsetneq R$$