Prime and maximal ideals

R is a commutative ring, $I \subsetneq R$ an ideal.

- I is prime if
 - $ab \in I$ implies $a \in I$ or $b \in I$.
- I is maximal if
 - $I \subset J \subset R$ implies J = I or J = R.

(If $I \subset J$, can think I is *smaller* than J. A maximal ideal is *bigger* than any comparable proper ideal.)

Quotients by prime or maximal

Proposition (15.4)

Given R a commutative ring, and $I \subset R$ an ideal.

- I is prime iff R/I is an integral domain
- \blacksquare I is maximal iff R/I is a field

Since a field is an integral domain, a maximal ideal is prime. (Cf. Lemma 15.3)

 $R = (\mathbb{Z}/5)[x]$, and $I = (x^2 + x + \overline{2})_{(\mathbb{Z}/5)[x]} \subset R$ Show $(\mathbb{Z}/5)[x]/I$ is a field.

• Has the form R/I, so show I is maximal

■ R = (Z/5)[x] is a PID, so I is maximal if generator is irreducible (See Q3)

 x² + x + 2 has no roots, so is irreducible (because it has degree 2)

So $(\mathbb{Z}/5)[x]/I$ is a field.

Q1 ctd)

- $R=(\mathbb{Z}/5)[x],$ and $I=(x^2+x+\overline{2})_{(\mathbb{Z}/5)[x]}\subset R$
- Find (multiplicative) inverse of $(\overline{2}x + \overline{3}) + I$.
 - Inverse has form (ax + b) + I (linear representative by division algorithm)
 - Set up and solve system of equations (See solutions)
 - Remember that $x^2 + I = (-x \overline{2}) + I$

Or, use Euclidean algorithm and read it backwards...

Q1 ctd)

$$\begin{aligned} \ln \, R &= (\mathbb{Z}/5)[x] \\ x^2 + x + \overline{2} &= q(x)(\overline{2}x + \overline{3}) + r(x) \\ &= (\overline{3}x + \overline{1}) \cdot (\overline{2}x + \overline{3}) - \overline{1} \end{aligned}$$

Rearrange to write

$$\overline{1} = -(x^2 + x + \overline{2}) + (\overline{3}x + \overline{1})(\overline{2}x + \overline{3})$$
 Modulo I

$$\overline{1} + I = \left((\overline{3}x + \overline{1}) + I \right) \cdot \left((\overline{2}x + \overline{3}) + I \right)$$

So $(\overline{3}x + \overline{1}) + I$ is the multiplicative inverse. (Repeat steps for more complicated examples.)

Theorem (13.2)

Given ring homomorphism $\phi \colon R \to S$. Define associated map $\overline{\phi}$ by

 $\overline{\phi} \colon R/\ker\phi \to \operatorname{im}\phi$ $r + \ker\phi \mapsto \phi(r)$

Then $\overline{\phi}$ is an isomorphism. So $R/\ker\phi \cong \operatorname{im}\phi$

If you see an isomorphism involving a quotient ring, think First Isomorphism Theorem