Warmup Q2'a' and Q7i

- 2'a') Write this permutation as product of
 - i) disjoint cycles,
 - ii) transpositions

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5 \end{pmatrix}$$

.

7i) Find an element of maximal order in

$$((\mathbb{Z}/19)^{\times}, \cdot)$$

Permutations

■ Permutation $\sigma \in S_n$ is a bijective function

$$\sigma \colon \{1, \dots, n\} \to \{1, \dots, n\}$$

- Multiplication is function composition. From right to left!
- As disjoint cycles, follow one input until you loop back.
 Notation

$$(a_1 \ a_2 \ \cdots \ a_k) \coloneqq \begin{pmatrix} a_1 \ a_2 \ \cdots \ a_{k-1} \ a_k \\ a_2 \ a_3 \ \cdots \ a_k \ a_1 \end{pmatrix}$$

As transpositions, use

$$(a_1 \ a_2 \ a_3 \ \cdots \ a_k) = (a_1 \ a_k) \cdots (a_1 \ a_3)(a_1 \ a_2)$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5 \end{pmatrix}$$

- i) $\rho(1) = 7$, $\rho(7) = 3$, $\rho(3) = 4$, $\rho(4) = 1$ back to start.
 - This gives cycle (1 7 3 4). Repeat for all elements.
 - So $\rho = (1\ 7\ 3\ 4)(2\ 6)(5\ 8)$ as disjoint cycles.
- ii) Apply $(a_1 \ a_2 \ a_3 \ \cdots \ a_k) = (a_1 \ a_k) \cdots (a_1 \ a_3)(a_1 \ a_2)$.
 - This gives $(1 \ 7 \ 3 \ 4) = (1 \ 4)(1 \ 3)(1 \ 7)$. Repeat . . .
 - So $\rho = (1 \ 4)(1 \ 3)(1 \ 7)(2 \ 6)(5 \ 8)$ as transpositions.

Order of elements

Definition (Order)

Order of $g \in G$ is smallest positive integer r with

$$g^r = e$$

Useful fact, which can save lots of work

Fact (via Lagrange)

If
$$\#G < \infty$$
, then

order of $g \mid \#G$

Q7i)

Element of maximal order in $G = ((\mathbb{Z}/19)^{\times}, \cdot)$?

- $(\mathbb{Z}/19)^{\times} = \{ \overline{1}, \overline{2}, \dots, \overline{18} \}.$
- Possible element orders are 1, 2, 3, 6, 9, 18. (Divisors of #G = 18.)
- Find order of $\overline{1}$, of $\overline{2}$, of $\overline{3}$, ... by computing powers
- Have $\overline{2}^2 = \overline{4} \neq \overline{1}$, $\overline{2}^3 = \overline{8} \neq \overline{1}$, $\overline{2}^6 = \overline{7} \neq 1$, $\overline{2}^9 = \overline{18} \neq \overline{1}$.
- So order of $\overline{2}$ must be 18.

Maximal order in G is 18 = #G, so G is cyclic.

An element of maximal order is $\overline{2}$.