Warmup Q4

Are the groups

 $\blacksquare \ \mathbb{Z} \times \mathbb{Z}, \text{ and } \mathbb{Z}$

isomorphic? (Why?)

Recall

Direct product of (G, \circ) and (H, \bullet) is

$$G \times H = \{ (g, h) \mid g \in G, h \in H \} ,$$

with operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1 \circ g_2, h_1 \bullet h_2).$

Distinguishing groups

. . . .

Isomorphic groups share the same 'algebraic' properties (Lemma 6.1) If $G \cong H$, then G and H

- Are both Abelian, or both non-Abelian
- Both have same size: #G = #H
- \blacksquare Both have same number of elements of order n
- Are both cyclic, or both non-cyclic

Warning: Can't say $G \cong H$ even if these all agree! Need to give an isomorphism (explicitly, or by abstract theory).

Are the groups $\mathbb{Z}\times\mathbb{Z}$ and \mathbb{Z} isomorphic?

- Are both abelian South same size Same orders of elements What now?
- $\blacksquare \ \mathbb{Z}$ is cyclic. Is $\mathbb{Z} \times \mathbb{Z}$ cyclic? I claim no.

Suppose $\mathbb{Z} \times \mathbb{Z}$ is generated by $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. Then $\langle (a, b) \rangle = \{ (ka, kb) \mid k \in \mathbb{Z} \}.$

• Case b = 0: Then $(a, 1) \notin \langle (a, b) \rangle$.

• Case $b \neq 0$: Then $(a, 2b) \notin \langle (a, b) \rangle$.

So $\mathbb{Z} \times \mathbb{Z}$ is not cyclic. And $\mathbb{Z} \times \mathbb{Z}$ is not isomorphic to \mathbb{Z} .