Warmup Q2i)

Find the orbits and stabilisers for

•
$$G = S_3$$
 acting on itself (that is on $X = S_3$)

by conjugation.

Recall

If G acts on X = G by conjugation, then for $g \in G$, and $x \in X$

$$g(x) = gxg^{-1}$$

Group actions

Definition (Group Action, Definition 8.1)

An action of group G on set X is a homomorphism

$$\varphi\colon G\to S_X$$

Useful shorthand $g(x) \coloneqq \varphi(g)(x)$. In reality this means we have to check • $\varphi(g)$ is a bijection $X \to X$, • $\varphi(e) = \operatorname{id}_X$, meaning e(x) = x, and (Identity) • $\varphi(g) \circ \varphi(h) = \varphi(gh)$ meaning (Compatibility) g(h(x)) = (gh)(x)

Orbits, stabilisers

For action of ${\cal G}$ on ${\cal X}$

Definition (Orbit)

The (G-)orbit of $x \in X$ is

$$G(x) \coloneqq \{ g(x) \mid g \in G \} \subset X$$

Definition (Stabiliser)

The stabiliser of $x \in X$ is

$$G_x \coloneqq \{ g \in G \mid g(x) = x \} \subset G$$

Theorem (Corollary 8.19)

If G acts on X, then

$$\#G(x)\cdot\#G_x=\#G$$

Size of the orbit tells you the size of the stabiliser. Useful: Finding enough elements let's you determine G_x exactly.

Q2i) - Orbits

Orbits and stabilisers of $G = S_3$ acting on itself by conjugation?

- These orbits are conjugacy classes
- Conjugate elements have the same order (week 13, Q5i)

Good idea for conjugacy classes: gather elements by their orders

$$\overbrace{\left\{ e = (1) \right\}}^{\text{order 1 elements}}, \quad \overbrace{\left\{ (12), (13), (23) \right\}}^{\text{order 2 elements}} \text{ and } \overbrace{\left\{ (123), (132) \right\}}^{\text{order 3 elements}}$$

Observe $(13)(12)(13)^{-1} = (23)$, and $(23)(12)(23)^{-1} = (13)$. Also $(12)(123)(12)^{-1} = (132)$.

So these sets are already the orbits. (Why...?)

Q2i) - Stabilisers

 $G = S_3$, so #G = 6. From Orbit-Stabiliser Theorem get $\#G_x$

Element x	Orbit $G(x)$	#G(x)	$\#G_x$
e	$\{ e \}$	1	6
(12), (13) , or (23)	$\{(12), (13), (23)\}$	3	2
$(123) { m or} (132)$	$\{(123),(132)\}$	2	3

Warning: Same orbit means same *size* stabiliser. Maybe not equal.

• Already get $G_e = S_3$, for size reasons.

Easy elements in G_x ? For conjugation, have $\langle g \rangle < G_g$. In the remaining cases $\langle g \rangle$ is already big enough. So

•
$$G_{(1\,2)} = \langle (1\,2) \rangle$$
, $G_{(1\,3)} = \langle (1\,3) \rangle$, $G_{(2\,3)} = \langle (2\,3) \rangle$, and

•
$$G_{(1\,2\,3)} = G_{(1\,3\,2)} = \langle (1\,2\,3) \rangle$$