Warmup Q6)

Abelian group G is generated by w, x, y, z with relations

$$\begin{cases} 3w + 5x - 3y = 0 \\ 4w + 2x - 2z = 0 \end{cases}$$

What is G isomorphic to? (Rank and torsion coefficients?)

Hint

Reduce

$$\begin{pmatrix}
3 & 5 & -3 & 0 \\
4 & 2 & 0 & -2
\end{pmatrix}$$

with integer row and column operations. (Why?)

Fund Thm for Finitely Generated Abelian Groups

Theorem (FTFGAG, 12.13)

Every finitely generated abelian group can be written as

$$\mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_k \times \mathbb{Z}^r$$
.

Moreover can choose $d_1 > 1$ and $d_i \mid d_{i+1}$, then this form is unique.

In the case where $d_1 > 1$, and $d_i \mid d_{i+1}$

Definition (12.14)

- \blacksquare The rank is r
- The torsion coefficients are d_1, \ldots, d_k . (With multiplicities.)

Putting abelian group into FTFGAG form

Generators x_1, \ldots, x_n and relations $R_i : a_{i1}x_1 + \cdots + a_{in}x_n = 0$. Make matrix

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Apply integer row and column operations to reduce to diagonal

$$D = \begin{pmatrix} d_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & d_k & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \underbrace{0 & \cdots & 0}_{r \text{ columns}} \end{pmatrix}$$
 Can pad with rows of 0's

So group is $\cong \mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_k \times \mathbb{Z}^r$. (Note: $r = \text{rank of } \ker D$)

Row and column operations

Generators x_1, \ldots, x_n and relations $R_i : a_{i1}x_1 + \cdots + a_{in}x_n = 0$. Use integer row and column operations

- \blacksquare Swap row i and row j
- Multiply a row i by -1
- Add $\alpha \times$ row i to row j, $\alpha \in \mathbb{Z}$

- \blacksquare Swap col i and col j
- Multiply a col i by -1
- Add $\alpha \times$ col i to col j, $\alpha \in \mathbb{Z}$

Relabel $R_i \leftrightarrow R_j$

Replace R_i with inverse $-R_i$

Replace R_j with $R_j + \alpha R_i$

Relabel $x_i \leftrightarrow x_j$

Substitute x_i with $x_i = -x_i'$

Substitute $x_i = x_i' + \alpha x_j$

Q6 - What finitely generated abelian group is this?

Generators
$$w, x, y, z$$
, relations
$$\begin{cases} 3w + 5x - 3y &= 0 \\ 4w + 2x &- 2z = 0 \end{cases}$$

$$\mathsf{Sub}\ z = z' + 2w$$

Generators
$$w, x, y, z'$$
, relations
$$\cong \begin{cases} 3w + 5x - 3y = 0 \\ 2x - 2z' = 0 \end{cases}$$

$$\mathsf{Sub}\ z' = z'' + x$$

Generators
$$w, x, y, z''$$
, relations $= \begin{cases} 3w + 5x - 3y = 0 \\ -2z'' = 0 \end{cases} \sim \begin{pmatrix} 3 & 5 & -3 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$

$$\begin{pmatrix} & w & & x & y & z \\ 3 & & 5 & -3 & 0 \\ 4 & & 2 & 0 & -2 \end{pmatrix}$$

$$c_1 \mapsto c_1 + 2c_4$$

$$\sim \begin{pmatrix} & w & & x & y & z' \\ 3 & & 5 & -3 & 0 \\ 0 & & 2 & 0 & -2 \end{pmatrix}$$

$$c_2 \mapsto c_2 + c_4$$

$$\sim \begin{pmatrix} & w & & x & y & z'' \\ 3 & & 5 & -3 & 0 \\ 0 & & 0 & 0 & -2 \end{pmatrix}$$

$$\mathsf{Sub}\ y = y' + w + 2x$$

Generators
$$w, x, y', z''$$
, relations
$$= \begin{cases} -x - 3y' &= 0 \\ -2z'' &= 0 \end{cases}$$

Sub
$$x = x' - 3y'$$

Generators
$$w, x', y', z''$$
, relations
$$= \begin{cases} -x' &= 0 \\ -2z'' &= 0 \end{cases}$$

Replace R_1 , R_2 by inverses

Generators
$$w, x', y', z''$$
, relations
$$\begin{cases} x' &= 0 \\ 2z'' = 0 \end{cases}$$

$$c_1 \mapsto c_1 + c_3, c_2 \mapsto c_2 + 2c_3$$

$$\sim \begin{pmatrix} & w & x & y' & z'' \\ & 0 & -1 & -3 & 0 \\ & 0 & 0 & 0 & -2 \end{pmatrix}$$

$$c_3 \mapsto c_3 - 3c_2$$

$$\sim \begin{pmatrix} & w & x' & y' & z'' \\ & 0 & -1 & 0 & 0 \\ & 0 & 0 & 0 & -2 \end{pmatrix}$$

$$r_1 \mapsto -r_1$$
, $r_2 \mapsto -r_2$

$$\sim \left(egin{array}{cccc} w & x' & y' & z'' \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 2 \end{array}
ight)$$

Relabel
$$w \leftrightarrow x'$$
, then $x' \leftrightarrow z''$ | Swap $c_1 \leftrightarrow c_2$, then $c_2 \leftrightarrow c_4$

Generators w, x', y', z'' , relations
$$\cong \begin{cases} w & = 0 \\ 2x' & = 0 \end{cases} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}$$

Now it's easy to identify the group

$$G \cong \frac{\mathbb{Z}\langle w \rangle}{\langle w \rangle} \times \frac{\mathbb{Z}\langle x' \rangle}{\langle 2x' \rangle} \times \mathbb{Z}\langle y' \rangle \times \mathbb{Z}\langle z'' \rangle$$
$$\cong \mathbb{Z}/1 \times \mathbb{Z}/2 \times \mathbb{Z} \times \mathbb{Z}$$
$$\cong \mathbb{Z}/2 \times \mathbb{Z}^2$$

■ Torsion coefficients $d_1 = 2$, and rank r = 2