
Analysis 1
Some extra, or interesting, or challenging questions

See http://www.maths.dur.ac.uk/users/steven.charlton/analysis1_1314 for updates.

Below are come extra, or interesting, or challenging questions related to, or extending, the
concepts and results covered in the Analysis 1 course.

Questions marked with:

∗ are tricky, but require nothing more than what is covered in the course
# are more difficult – they may require some clever insight, or trick
⇒ require using results from a previous question, so may exceed the scope of the course

1 Limit Computations
∗Q1) Calculate limn→∞ xn for the following sequences:

i) xn = 3
√
n3 + 2n2 + 7n− 3 − 3

√
n3 − 3n2 − 6n+ 4 .

Hint: Make use of a3 − b3 = (a− b)(a2 + ab+ b2)

ii) More generally xn = 3
√
n3 + an2 + bn+ c − 3

√
n3 + dn2 + en+ f

Q2) Use the squeezing theorem to evaluate limn→∞ xn for the following sequences:

i) xn = n2 + cos(n/5)
2n2 − sin(n2)

∗ii) xn =
(

3 cosn+ 4 sinn
6

)n
Hint: Can you write 3 cosn+ 4 sinn in the form R sin(n+ θ)?

iii) xn = (cosh(n))1/n

Hint: Squeeze log xn.

∗Q3) Given Stirling’s approximation limn→∞
n!√

2πn
(
n
e

)n = 1, compute limn→∞ xn for the

following sequences:

i) xn = n(3n)!
33n(n!)3

ii) xn = 24n

n
(2n
n

)2

2 ε-N Proofs of Limit Computations
Q1) Evaluate limn→∞ xn, and then give a formal ε-N proof of this result, for the following

sequences:
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i) xn = n+ 5
n2 + 3

ii) xn = 2n2 + 7
n2 + 2n+ 1

iii) xn = 3n3 − 2n+ 7
n4 + 7n+ 1

iv) xn = 3 + 2n2

2− n+ n2

∗Q2) Evaluate limn→∞ xn, and then give a formal ε-N proof of this result, for the following
sequences:

i) xn =
√

2 + x

1 + x

ii) xn = 3 cos(n) + 2n2

2− n+ n2

iii) xn = 3 + 2n2

2− n sin(n) + n2

3 Limit Theorems
∗Q1) COLT: If xn → L and yn →M as n→∞, use the ε-N definition of limits to prove that

as n→∞:

i) xnyn → LM

Hint: Rewrite xnyn − LM as (xn − L)(yn −M) + L(yn −M) +M(xn − L).

ii) 1
yn
→ 1

M
(assuming M and all yn are non-zero)

∗Q2) If an → L as n→∞, give direct ε-N proofs of the following:

i) a2
n → L2 (don’t just appeal to calculus of limits)

ii) √an →
√
L (assuming an ≥ 0 for all n)

iii) log an → logL (assuming an > 0 for all n, and L > 0)

iv) exp(an)→ exp(L)
#Q3) Cesàro Mean: Suppose that the sequence xn → L as n→∞. Consider the sequence

yn := 1
n

(x1 + x2 + · · ·+ xn) .

Prove that limn→∞ yn = L, as well.

Hint: Since xn → L, find N0 such that n ≥ N0 implies |xn − L| < ε/2. Split up the sum in
yn at the fixed number N0.

⇒Q4) Use the result in the previous question to evaluate limn→∞ yn for the following sequences:
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i) yn = 1
n

log
(
11/1 21/2 31/3 · · · n1/n)

Can you evaluate any of these more directly?

#Q5) Suppose an is a sequence such that limn→∞

∣∣∣∣an+1

an

∣∣∣∣ = L. Prove that limn→∞
n
√
|an| = L,

as well. Does the converse hold?

Note: This says that whenever the ratio test succeeds (reaches a conclusion on convergence
or divergence) then the root test (see Section 5, Q1) below) will also succeed (and reach the
same conclusion, of course). So the root test is stronger than the ratio test.

⇒Q6) Use the result in the previous question to evaluate limn→∞ xn for the following sequences:

i) xn = n

√
1
n!

ii) xn = n
n
√
n!

iii) xn = n
1
n

Can you evaluate any these more directly?

Q7) Tail of a sequence: It’s been mentioned several times that changing the first few terms
of a sequence does not change its convergence, or the limit. Let’s make this precise: Suppose
xn → L as n → ∞. Set y1 = A1, y2 = A2, . . . , yM−1 = AM−1 and yn = xn for n ≥ M .
Give an ε-N proof that yn → L too.

Q8) It’s also been mentioned that ‘shifting’ a sequence does not change its convergence, or the
limit, either. Let’s make this precise: Suppose xn → L as n→∞. Set yn = xn+k. Give an
ε-N proof that yn → L too.

4 Completeness
Q1) Recall the completeness of R: every non-empty subset S ⊂ R which is bounded above has a

supremum supS ∈ R. Show that this does not hold if R is replaced by Q by looking at the
following example:

S = {x ∈ Q | x2 < 2}

Specifically, show that no q ∈ Q can be the least upper bound of S. So we can conclude Q
is not complete.

#Q2) Cauchy Criterion: A sequence xn is called Cauchy if: given any ε > 0, there exists N
such that for n,m ≥ N , we have |xn − xm| < ε. (Eventually all terms are within ε of each
other.) Working in R, prove the following are equivalent:

a) The sequence xn converges (to L ∈ R).

b) The sequence xn is Cauchy.
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Hint: For a) =⇒ b), write xn − xm as (xn − L) + (L− xm), and use the ε-N definition of
xn → L. (With what choice of ε?)
For b) =⇒ a), first show {xn} is bounded. Then use Bolzano-Weierstrass to find a
convergent subsequence xni → L. And finally show xn → L, itself.

Note: a) =⇒ b) always holds, but showing b) =⇒ a) requires using the completeness
of R. That every Cauchy sequence converges can be taken as a definition of completeness.
You might meet the concept of a Cauchy sequence again Complex Analysis 2.

5 Infinite Series Convergence Tests
Q1) Root Test: Let

∑∞
n=1 an be a series, and suppose that L = limn→∞

n
√
|an| exists. Prove

that:

• if L < 1 then the series converges absolutely,
• if L > 1 then the series diverges.

Can you say anything if L = 1? What if you also know that n
√
|an| → 1 from above, i.e.

eventually all n
√
|an| ≥ 1?

Hint: Imitate the proof of the ratio test.

⇒Q2) Use the root test above to determine whether or not the following series converge:

i)
∞∑
n=2

1
log(n)n

ii)
∞∑
n=2

[
log
(

3n2 + n

n2 − 2n+ 1

)]n

iii)
∞∑
n=3

[
log
(

2n3 − 5n2

n3 + 4n− 3

)]n

iv)
∞∑
n=1

[
3n6 sin3

(
2n+ 7

3n3 + 5n2 − 6n− 1

)]n
Q3) Generalised Comparison: Suppose an, bn, cn are three sequences such that an ≤ bn ≤ cn

for all n ∈ Z>0. Prove that:

• If the series
∑∞
n=1 an and

∑∞
n=1 cn both converge, then

∑∞
n=1 bn also converges.

• If the series
∑∞
n=1 an diverges to +∞, then

∑∞
n=1 bn also diverges to +∞.

• If the series
∑∞
n=1 cn diverges to −∞, then

∑∞
n=1 bn also diverges to −∞.

Hint: For the first part, what can you do with an ≤ bn ≤ cn to make the normal comparison
test applicable? For the second and third, partial sums?

Note: Since you haven’t seen this in lectures, you may not use this when solving homework or
exam questions unless you prove it first. If you really feel the need to use this generalisation,
it may be worth looking at

∑∞
n=1 |xn| instead.
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Q4) Recall the Alternating Sign Test from lectures: It says that if the sequence yn is positive,
decreasing, and limn→∞ yn = 0, then the alternating series

∑∞
n=1(−1)nyn converges.

i) Firstly, show that the condition that yn is positive can be removed: If yn is a decreasing
sequence, and limn→∞ yn = 0, then the alternating series

∑∞
n=1(−1)nyn converges.

Hint: Use yn is decreasing, and limn→∞ yn = 0 to show yn ≥ 0 for all n. What happens
if yN = 0 for some N , and otherwise?

∗ii) Now show that the other two hypotheses are necessary, even if you restrict to yn
positive.
That is, find a sequence an which is positive, decreasing, but doesn’t have limit 0, such
that the alternating series

∑∞
n=1(−1)nan doesn’t converge.

And find another sequence bn which is positive, has limit 0, but is not decreasing, such
that the alternating series

∑∞
n=1(−1)nbn also doesn’t converge.

Note: This is a nice example of how mathematicians think. When told of a theorem requiring
many hypotheses, a mathematician will naturally wonder whether all the hypotheses are
necessary. Where are these conditions used in the proof? Does theorem fail if I weaken or
remove any of the hypotheses? Can I generalise the theorem in any way?

∗Q5) Cauchy Condensation Test: Suppose an is a positive, decreasing sequence. By showing:

∞∑
n=1

an ≤
∞∑
n=1

2na2n ≤ 2
∞∑
n=1

an ,

conclude that:
∞∑
n=1

an converges ⇐⇒
∞∑
n=1

2na2n converges

Hint: Write out the partial sums.

Note: This generalises the proof from lectures that the harmonic series diverges. Taking
an = 1

n , one gets
∑∞
n=1

1
n converges if and only if

∑∞
n=1 2n 1

2n =
∑∞
n=1 1 converges, and the

latter series obviously diverges.
You will not need to use this in any homework, tutorial of exam questions. Just consider it
a glimpse of the vast zoo of more specialised convergence tests.

⇒Q6) In lectures you used the integral test to show the following series diverges. This time, use
Cauchy’s Condensation Test to show it diverges:

∞∑
n=2

1
n log(n)
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6 Infinite Series Convergence
Q1) True or false?

i)
∞∑
n=1

1
n1+ 1

n

converges since 1 + 1
n > 1.

ii)
∞∑
n=1

(
1− 1

n2

)n2

converges.

Q2) Do the following series converge?

i)
∞∑
n=1

(n− 1)!
nn−1

(
19
7

)n−1

Hint: You may assume that 19
7 < e.

ii)
∞∑
n=1

1
log(n!)

Hint: How do nn and n! compare?

iii)
∞∑
n=1

log
(
n+ 1
n

)
Hint: What are the partial sums?

Q3) Use the integral test to determine whether the following series converge:

i)
∞∑
n=3

1
n log(n) log(log(n))

ii)
∞∑
n=2

1
n log(n)2

iii)
∞∑
n=2

1
n
√

log(n)

iv)
∞∑
n=3

1
n log(n) log(log(n))1/3

v)
∞∑

n=15

1
n log(n) log(log(n)) log(log(log(n)))

Considering the above examples, can you guess a more general result? Can you prove it?

Note: Series like the above, and things involving nested logarithms appear a lot in analytic
number theory. This leads to the appalling joke: What sound does a drowning analytic
number theorist make? Log, log, log, . . .
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Q4) Linking to analytic number theory. . . If pn is the n-th prime number, Dusart’s inequality
says, for n ≥ 6:

pn < n log(n) + n log(log(n)) .

Use this to prove the divergence of the prime harmonic series:
∞∑
n=1

1
pn

Note: Isn’t this a little bit impressive? Even after getting rid of all the composite numbers
from the harmonic series, the sum still diverges. So in some sense you might say there are
more primes than squares, since

∑∞
n=1

1
n2 converges.

Q5) Find all values of p for which the following series converges:
∞∑
n=2

1
n log(n)p

Q6) You can determine whether the following series converge or diverge using other means, but
for this question use the integral test to determine whether they converge or diverge. Make
sure the function satisfies all the hypotheses of the integral test!

i)
∞∑
n=1

n2 exp(−n)

ii)
∞∑
n=1

log(n)
n2

iii)
∞∑
n=1

1
1 + n2

iv)
∞∑
n=1

1
2
√
x

7 Infinite Series Theorems
Q1) Tail of a series: It’s been mentioned that only the tail of an infinite series is important

when discussing convergence. Make this precise: By looking at the partial sums, show that∑∞
n=1 xn converges if and only

∑∞
n=M xn converges.

#Q2) Riemann Series Theorem: Let
∑∞
n=1 an be a conditionally convergent series.

i) Show that a conditionally convergent series must have an infinite number of positive
terms and an infinite number of negative terms.

ii) Take:

a+
n :=

{
an if an ≥ 0
0 otherwise

a−n :=
{

0 if an ≥ 0
an otherwise

,
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so that a+
n keeps the positive terms and replaces the negative terms with 0s, while

a−n keeps the negative terms and replaces the positive terms with 0s. Observe that:∑
an =

∑
a+
n +

∑
a−n . Use this to conclude that

∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n diverge to

+∞ and −∞ respectively.
∗iii) Pick any M ∈ R. Use the previous part to show that you can rearrange the terms of

the sequence an to get a new sequence bn whose sum
∑∞
n=1 bn = M .

Hint: For any r > 0 ∈ R, since
∑
a+
n diverges to +∞, the partial sums are eventually

greater r. Once you have added enough positive terms to exceed M , make use of the
negative terms. (Convince yourself that you’ve used every term an once and only
once.)

∗iv) Can you do the same but get that
∑∞
n=1 bn diverges to +∞, or diverges to −∞, or

diverges by oscillation1

Note: This question shows how dangerously, badly wrong some naïve ways of manipulating
infinite series can go: you can’t rearrange a convergent series and be sure you’ve still
got convergent series, let alone one with the same sum, at least for general infinite series.
However, it can be shown that when you rearrange an absolutely convergent series, the
rearranged series always converges and it converges to the same sum as the original series.
(Absolutely convergent series are very well behaved.)

8 Power Series
Q1) Dilogarithm and polylogarithms: Recall the Taylor series for − log(1− x) is given by

− log(1− x) =
∞∑
n=1

xn

n
,

and this converges for |x| < 1. By replacing n with n2 we get the definition of the dilogarithm
function

Li2(x) :=
∞∑
n=1

xn

n2 .

More generally the p-th polylogarithm (for p = 1, 2, 3, . . .), which is defined by

Lip(x) :=
∞∑
n=1

xn

np
.

i) What is the radius of convergence of the power series defining Lip(x)?

ii) Using the fact that you can differentiate a power series term-by-term, find d
dx Lip(x)

(in terms of Lip−1).
∗iii) Check the following identity for the dilogarithm

Li2(x2) = 2(Li2(x) + Li2(−x))

(Try adding the power series together.)
1That is, the series diverges but the partial sums don’t go to ±∞, the partial sums remain bounded.
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∗iv) A similar identity holds for every polylogarithm. What should the coefficient λ be to
make the following identity true?

Lip(x2) = λ(Lip(x) + Lip(−x))

Note: The dilogarithm and higher polylogarithm functions are of considerable interest to
both number theorists and particle physicists.
One of the main focuses is finding ‘functional equations’, identities like the two examples
above. For example, the fundamental property of the (usual) logarithm is that it turns
multiplication into addition

log(xy) = log(x) + log(y) .

(You can write this in terms of Li1(x) = − log(1− x) if you want.)
Similarly, the dilogarithm satisfies the so-called ‘5-term’ equation

Li2(x) + Li2(y) + Li2
(

1−x
1−xy

)
+ Li2(1− xy) + Li2

(
1−y

1−xy

)
=

π2

6 − log(x) log(1− x)− log(y) log(1− y) + log
(

1−x
1−xy

)
log
(

1−y
1−xy

)
.

This equation is the fundamental property of the dilogarithm. (Where does π2

6 come from?
Try looking up the Basel Problem.)
Physicists are interested in these functional equations because of how drastically they can
simplify answers to certain computations. An answer which used to span 14 pages can be
condensed to just 4 lines with good knowledge of the properties of polylogarithms!
See http://en.wikipedia.org/wiki/Dilogarithm and http://en.wikipedia.org/wiki/
Polylogarithm for much more information.

9 Riemann Integrals
Q1) Let Pn([a, b]) be the partition of the interval [a, b] into n equal parts. Write down the upper

and lower Riemann sums for the given function, on the given partition of the given interval,
and numerically evaluate the results:

i) f(x) = x for P5([0, 3])

ii) f(x) = x for P10([0, 3])

iii) f(x) = x2 for P4([0, 1])

iv) f(x) = x2 for P5([0, 1])

v) f(x) = x2 for P6([0, 1])

vi) f(x) =
√
x for P4([0, 4])

vii) f(x) =
√
x for P5([0, 4])

viii) f(x) =
√
x for P6([0, 4])

ix) f(x) = ex for P5([1, 2])
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x) f(x) = ex for P6([1, 2])

xi) f(x) = log x for P5([1, 2])

xii) f(x) = log x for P5([1, 2])

xiii) f(x) = sin x for P5([0, π])

xiv) f(x) = sin x for P5([0, π])

Q2) Write down the upper and lower Riemann sums for the given function on the partition
Pn([a, b]) of the interval [a, b] into n equal parts. Use this to show that the function is
Riemann integrable on the given interval

i) f(x) = x on [0, 1]

ii) f(x) = x on [0, 2]

iii) f(x) = x on [0, a

iv) f(x) = x2 on [0, 1]

v) f(x) = x2 on [0, 2]

vi) f(x) = x2 on [0, a]

vii) f(x) = sin(x) on [0, π] (For ease, do this for P2n+1([0, π]).)
∗Q3) By viewing the following as a Riemann sum for a particular function on some interval,

express the following limits as a definite integral, and evaluate the integral to find the limit:

i) limn→∞
∑n
i=1

1
n

√
i
n

ii) limn→∞
∑n
i=1

1
n

√
i−1
n

iii) limn→∞
∑n
i=1

1
n

(
1 + i

n

)2

iv) limn→∞
∑n
i=1

1
n

(
1 +

(
i
n

)2
)

v) limn→∞
∑n
i=1

1
n

(
1 +

(
1 + i

n

)3
)

∗vi) limn→∞
∑n
i=1

n
n2+i2

10 Uniform Convergence
Q1) Let fn(x) = 1

xn , for x ∈ [1,∞), and n = 1, 2, 3, . . .. Show that fn converges (pointwise).
Show that fn converges uniformly on [R,∞), for R > 1. Does it converge uniformly on
[1,∞)?

Q2) Find the pointwise limit of the sequence of functions fn = nx2+1
nx+1 , on the interval [1, 2].

Show that the convergence is uniform on this interval.

Q3) Fix 0 < M < 1 ∈ R. Show that
∞∑
n=0

xn
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converges uniformly for |x| < M . Does it converge uniformly for |x| < 1?

Q4) Fix M > 0 ∈ R. Show that
∞∑
n=0

xn

n!

converges uniformly for |x| < M . Does it converge uniformly for all z ∈ R?

∗Q5) Recall the ε-N definition of uniform convergence of functions fn to f on some region I:

∀ε > 0 ∃N ∈ Z>0 such that ∀x ∈ I we have
n > N =⇒ |fn(x)− f(x)| < ε

Use this to show that if each fn is continuous on I, the limit f is also continuous on I.

Hint: Make use of f(z) − f(a) = (f(z) − fn(z)) + (fn(z) − fn(a)) + (fn(a) − f(a)). Can
you make each bit < ε/3?

11 Improper Integrals
Q1) Show that the following integral converges absolutely:∫ ∞

0

cosmx
1 + x2 dx

Note: In Complex Analysis 2 you will learn how to exactly evaluate this integral. Its exact
value is 1

2πe
−m. How does this compare with the upper bound you use above?

∗Q2) Fresnel Integral: By using the change of variables t = x2 on
∫ s

0 sin(x2) dx, and integrating
the result by parts, show that: ∫ ∞

0
sin(x2) dx

converges.

Note: This shows that, unlike for infinite series, f(x)→ 0 as x→∞ is not necessary for∫∞
0 f(x) dx to converge, since limx→∞ sin(x2) does not exist. Although as Question 75 on
the main problem sheet shows: if limx→∞ f(x) exists, then it must be 0.
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