
Analysis Tutorial Week 5
Solutions

Question 17

Question: If {xn} is a sequence such that xn → L, and xn < 0 for all n, prove that L ≤ 0. Is
it necessarily true that L < 0?

Sketch: We want to try to show this by contradiction.
Recall that xn → L means that for any ε > 0 we choose, we can find N such that if n > N ,

then |xn − L| < ε. “After some point all the terms of the sequence xn are within ε of the limit
L.”

Heuristically we want to argue that if L > 0, eventually the terms xn are so close to L that
they must be positive, which will contradict the hypothesis xn < 0 for all n, given in the question.
A picture might be illuminating:

But we need to do this formally. First some sketchy workings. . .
Suppose that the limit L of the sequence is > 0. Then for ε > 0, we can find N such that

n > N implies |xn − L| < ε. Let’s expand this to see what choice of ε might be good:

|xn − L| < ε ⇐⇒ −ε < xn − L < ε

⇐⇒ L− ε < xn < ε+ L

Can we choose ε > 0 so that L− ε > 0? Yes, the picture might suggest to try something like
ε = L/2, half the distance from 0 to L. Then L − ε = L − L/2 = L/2 > 0. Now we have the
pieces we need to write out the formal proof.

Can we improve L ≤ 0 to L < 0? Probably not, but we’d need to find a counterexample to
prove this. One of the first sequences you’ve seen is xn = 1/n which has limit 0, even though all
the terms are positive. Can we tweak this to make it work?

Solution: Suppose that the limit L of the sequence xn is > 0. If we take ε = L/2 > 0, then by
the ε-n definition of a limit we can find N0 such that n > N0 implies |xn − L| < ε = L/2. But
then:

|xn − L| < L/2 =⇒ −L/2 < xn − L < L/2

=⇒ L− L/2 < xn < L+ L/2

=⇒ L/2 < xn < 3L/2

In particular xn > L/2 > 0.
So we have n > N0 implies xn > 0, which contradicts the hypothesis of the question that

xn < 0 for all n. Hence our assumption was wrong and so L ≤ 0.

It is not necessarily true that L < 0. Consider xn = −1/n. Certainly xn < 0 for all n, but
we have that xn → 0.
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Question 25

Question: Prove that one of the following statements is true and that the other is false.

(a) If xn → 1 as n→∞, then (xn)n → 1 as n→∞.

(b) If 0 < r < 1 and xn → r as n→∞, then (xn)n → 0 as n→∞.

Sketch: After doing some of the earlier tutorial questions, and the homework, the result
that (1 + c

n )n → ec should be fresh in your mind. This should be fast becoming a favourite
(counter)example. . . . So (a) is false. Now we have to prove (b) is true.

Heuristically, if xn → r, then eventually xn is very close to r, it is eventually within some
small ε of r. Since 0 < r < 1, this means that eventually 0 < r − ε < xn < r + ε < 1, so we can
squeeze xn to 0. (Try drawing a picture like above. . . )

How to make this rigorous? We’ll want to choose ε so that r+ ε < 1. Like above, let’s choose
ε to be half the distance from r to 1. So ε = 1−r

2 . Then r + ε = 1+r
2 < 2/2 = 1. Do we have to

worry about the lower bound not being good enough? No, since r > 0, taking away such a small
epsilon won’t get us down far enough to be problematic. And anyway we are going to consider
|xnn| rather than xnn. So we’re good to go.

Solution:

(a) is false: Consider xn = 1+ 1
n . Certainly xn → 1+0 = 0, by COLT. But xnn = (1+ 1

n )n → e
is a result from lectures, and e 6= 1.

Another very nice counter-example is something like xn = 71/n. You can check easily that
xn → 70 = 1, but obviously xnn = 7→ 7, and definitely 7 6= 1.

(b) is true: Take ε = 1−r
2 > 0, then we can find N0 such that n > N0 implies |xn − r| < ε =

1−r
2 . Then:

|xn| = |xn − r + r| ≤ |xn − r|+ |r|
using the triangle inequality

= |xn − r|+ r

< 1−r
2 + r = 1+r
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So we get:
|xnn| = |xn|

n
< ( 1+r

2 )n

Since 0 < 1+r
2 < 1 is constant, the sequence ( 1+r

2 )n → 0. Hence xnn → 0 as well, by squeezing.

(It doesn’t matter what happens with the first N0 terms of the sequence, since this is only a
fixed finite number of terms – the ‘tail’ of the sequence is all that matters.)
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