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Problem sheet - Multiple Zeta Values
Starred® questions are bonus questions.

Discussion on 09.07 at 11:30: Ex 10.1 — Ex 104
Discussion on 02.07 at 11:30: Ex 9.1 — Ex 9.3

Keywords for the week 29.06.20-05.07.20: (Drinfeld) associator, Mould, Bimould, Alter-
nal, Alternil

Exercise 10.1: (5 points)
Let a = a;,a;, - - - a;, and define the mould M*: A — k(uy,us,us,...) by
u 0 if a = () or if a has a repeated letter, and
(M ]a) = - iu — iu R 72 otherwise.
i9 i1 Uig i9 ig g1

a) Check that for depth ¢ < 4, the condition for M to be alternal, i.e.
M(u, ..., up) W My, .. Upgs) =0

for r,s > 1, r + s < 4 is satisfied.

b*) Write down all the equations in depth ¢ = 5 which must be satisfied for M to be
alteral. Check these equations hold.

Exercise 10.2: (5 points)

a) Let M*®: A* — kfuy, vy, ug, va, us, vs,...] be a bimould, and define the swap by

swap <M Uy, U2, ..., U ) - M Uy, Vg—1 — Uy, % i %) ‘
v, V2, ..., U Uy + o+ Uy U+ F Uy Uy

Check that the function composition swap oswap = id holds.

b) Let m = (0,...,0,m.,m;y1,...,) be an alternil bimould such that m; = 0 for i < r
and m, # 0. Show that the mould (0,...,0,m,,0,...) concentrated in depth r (by abuse
of notation just m,), is an alternal bimould.

Exercise 10.3: (5 points)
let Fy(z1,...,20) =32, 51 € (81501, s)) st 237! be the generating series of stuffle
regularised multiple zeta values of depth (. Viewing F' = (Fy, Fi(z1), Fa(21,22),...) as a
mould show that

FT(xla s 7551“) * Fs(xT-i-la s axr-i-s) = Fr(xla s )$r> i Fs<xr+1> R 7x7'+5) >
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https://ncatlab.org/nlab/show/Drinfeld+associator
https://www.math.uni-hamburg.de/home/kuehn/mzv_ss20/mzv_ss20.html

Exercise 10.4*: (5 points)

Let
o = Z CH(w)w

we{xzo,x1 }*
be the Drinfeld associator. Check that ® is group-like, i.e. under the coproduct given by
Ax;)) =2;® 1 +1® z; (so x; is primitive), we have AP = P R .

Hint: Make use of the criterion of Friedrichs (see Satz 3.8 in the Masters Thesis of A.
Burmester).



Keywords for the week 22.06.20-28.06.20: Broadhurst-Kreimer conjecture, Hilbert-Poincaré
series, Hopt algebral Lie algebra,

Exercise 9.1: (5 points)
a) Part of Zagier’s conjecture claims that the algebra Z of MZV’s is graded by the weight.
Assuming this, show that Z is a filtered, graded algebra (filtered by the depth, and graded
by the weight).

b) Let k be a field, and let A and B be filtered graded k-algebras. Show that A ®; B is
again a filtered graded k-algebra.
Hint: (See also, Deligne “Théorie de Hodge”\)

¢*) The show that the map (Q(to,t3), W) — Z, t;, - - - t;, +— (41, ..., 1) cannot extend to
a homomorphism.

Exercise 9.2: (5 points)
Recall )
BK"(z,y) = :
(@Y = =0y 7 5@ = Sy

where

’ 3. .5 7

212
S(LE): :x12+l‘16+l‘18+~'-.

(1 —2%)(1 =29
Define (gk¢)k>3.0>1 through
[T a—a"y) o =BK(z,y).
k>3,0>1
Assuming the Broadhurst-Kreimer conjecture, then gy, is the (conjectural) number of
generators of grf’(Z°) in weight & and depth /.

a*) Using the Moebius inversion formula (Ex 8.1 below), explain why

p(d)
= —=b
Gkt Z g k/dt/d
d|(k,0)
where by is the coefficient of z¥y* in log BK’(x, y).

b) Show that

03(1’)3 _ Z (k B 5)(l€ 7 i 7)1‘k.

£>9 g
odd
Check also that
11 + 622 — 924 1 31 + 1522 + 152*
15
5(z)0s(x) = = ( B(1—227 @ 8@+a?) | 48(1—29) ) :


https://en.wikipedia.org/wiki/Hilbert%E2%80%93Poincar%C3%A9_series
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Poincar%C3%A9_series
https://en.wikipedia.org/wiki/Hopf_algebra
https://en.wikipedia.org/wiki/Lie_algebra
https://publications.ias.edu/sites/default/files/Theorie-de-Hodge-I.pdf

hence give a formula for the coefficient of z* in S(x)O3(z).

c¢) Prove that for k odd, we have

Exercise 9.3*: (5 Points)
Consider the double shuffie space

DS3(d) = {f € Qlz1, z2, x3]() ‘ floaz = fFluae) = 0}
and the following sequence

0— DSg(n) i) Q[xl,iﬁg,.’ﬂg]{i

) = Q[z1, x2, xs](Gn) @ Q[%Jzﬂb]% — 0, (*)

where H = (t,ptp~!, —id), with t = <§ 110

0
5), and 7(f) = flua2) © flpw,2p-

a) Using Molien’s theorem (Ex 2.1), compute the Molien series of Q[l’l,l'g,ftg,]gl), of

§é>’ p = (% ? 8). Moreover, G' = (t,ptp~!, c3)
and GP = (ptp~',t, pcsp™t), where c3 = (%é

Q[zy, x2, mg](% and of Q[x1, x, xg](cf) Assuming (x) is exact, show that

. " t5(1 + 2 — t1) it PP
gdlm@DS;;(n)t —1+(1_t2)<1_t4)(1—t6) _1+Z{ Jt |
o n>0

Using that g, < dimg DS,(k — ¢) from Ihara-Kaneko-Zagier, give a bound on gy 3.
b) Show that the map 7 is well-defined, and that ker(r) = DS3(n).

c¢) By considering the dual spaces, show that 7 is surjective if and only if Q[z1, x, 333](Gn) N

Hint: Write the index shuffle operation LL(1,2) = 1 + ¢ + ¢3, where ¢ = (

oo

1
0
0

[ =J=]

Q[z1, x2, xg](an) = 0. Using the hint below, conclude that 7 is surjective.

Hint: Suppose that I' € GL,(Z) has finite index, and f: R® — R is a [-invariant
function. Then the function f is constant. (Can you indicate why?)



Keywords for the week 15.06.20-21.06.20: Hilbert series and Hilbert polynomial, Hilbert-
Poincaré series, Mobius inversion

Exercise 8.1: (5 points)
a*) Let pu(n) denote the M&bius function defined by

0  if a square divides n,
pu(n) =< —1 if n==4p;---p, with r odd,
+1 ifn==+p;---p,. with r even.

Show that
1 ifn=1
d) = ’
Sua{y 42
dln
b) Let (fi)21, (9:)i2; be two sequences, which satisfy g, = 3_,, fa. Using the result in
part a), show the M&bius inversion formula holds f, = -, 1(d)gn/a.

c*) Let ®4(x) be the d-th cyclotomic polynomial, i.e. ®4(z) is the minimal polynomial of
the primitive d-th root of unity (4 = exp(2mi/d). (All other primitive d-th roots of unity
are roots of ®4(x). Why? How many primitive d-th roots of unity are there?)

Let n be a positive integer. Show that [, ®4(z) = 2™ — 1. Use Mobius inversion to give
an explicit formula for ®,, (involving polynomial multiplication and division).

Hint: Take logarithms.

Exercise 8.2: (5 points)
a) Let A, B be graded K-algebras. Show the following identities of Hilbert-Poincaré series

Haep(t) = Ha(t) + Hp(t),

Hagp(t) = Ha(t) - Hp(t),
where A @ B and A ® B are define through (A& B), = Ay ® By and (A ® B), =
> iri—k Ai @ Bj, respectively.
b) Compute H4(t) for the polynomial algebras

A=Klz], A=Klxy,...,x,], A=K][f1,..., [

where grading is given by degree of the polynomial, and fi,..., f, € Klzy,...,x,] \ K
are non-constant homogeneous polynomials.
c) Let A = Ek(f1,..., fn) be a free non-commutative polynomial algebra generated by

elements f; in degree deg(f;). Show that

1

Ha(t) = L=y (el
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https://en.wikipedia.org/wiki/Hilbert_series_and_Hilbert_polynomial
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Poincar%C3%A9_series
https://en.wikipedia.org/wiki/Hilbert%E2%80%93Poincar%C3%A9_series
https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula

d) Let A = Sym(V) be the symmetric algebra on a (graded) vector space V', i.e. A is
the free polynomial algebra on a basis of V. Show that the Hilbert-Poincaré series of A

satisfies
(o0}

H(t) = exp <Z HVTEtn>> :

n=1

e*) Using the Hilbert-Serre Theorem, indicate how to prove

1 — ¢des(f) _ ydeg(g) 4 ydeg(f)+deg(g)—deg(ged(f.9))
(1—1)? ’

Hylzy w011 =

where I = (f,g), with f,g € K[z1,25] \ K non-constant homogeneous polynomials.
Investigate the differences in dimensions for f = xy,g = 2*> € K[z,y] and f = zy,g =
2 +y* € K|z, vy

Hint: Hint forthcoming

Exercise 8.3: (5 points)
a) Suppose A is a connected graded free Q-algebra, with g algebra generators in degree

k. Show that
Hy(t) = J(1 =)

k>1

b) Let ¢ be the coefficients of log H4(t). By taking logarithms of the result in part a)
and using Mo6bius inversion, show that

d
gk = Z #Ck/d

d|k

c¢) According to Zagier’s conjecture, the algebra of Z of MZV’s has Hilbert-Poincaré series

1

Hz(t) = =

According to the standard conjectures on MZV’s Z is connected graded free algebra.
Assuming this, use part b) to show the (conjectural) number of algebra generators g7 of
Z is given by

1
Zz __
9 = - %N(k/d)l?d

where pg = pa_s + pa_s, d > 4, with p; = 0, p = 2, p3 = 3. Compute g7 for 1 < k < 20,
with computer assistance.

d*) Check that
1 1

I T B
and explain what interpretation this suggests for the structure of Z.

Hz(t)




Keywords for the week 08.06.20-14.06.20: Generating series, Iterated integral, Regulari-
sation

Exercise 7.1: (5 points)
(Moved from Week 6.) Let

Fy(ty, ... t) = g A R A R e A
(k17...,k4)€(Z>0)2

be the generating series of depth ¢ words. Compute the following shuffle products of
generating series, and express them in terms of Fj.

1) Fl(tl) LU F1<t2),
11) Fl(tl) LU Fg(tg,tg), and
111) Fg(tl, tg) LU FQ(tg,t4).

Exercise 7.2: (5 points)
Check the details of the proof that the Fg# generating series satisfy the shuffle product
relation

Ff(ty, o ) W EF (g, teys) = FEL (B o) | grs) -
a) Let Fy(tq,...,t;) be the generating series of depth ¢ words as in Ex 7.1 above, and let
Fff(ti,....te) = Filti+ - +tota+ o+t 1)

Compute explicitly the shuffle product of generating series Fi (t1)LUF (t5, 3), and express
it in terms of Fy and in terms of Fz#-

b*) Show that

Fr(t, oo b)) W Ey(tts o tns) = Fy(tr+ toe) (Foi (foy o 1) W Fu(tyits - s trss)))
LRt 4t ) (Fr(t, o ) W Fs i (fryay e tors)) -

Hint: Check that

Fr(th e 7tr> = ZL‘lFT_l(tQ, Ce ;tr) + ZL‘()ller(tl, c. ;tr)
= (Zﬂl + ‘TotlFl(tl))Fr,l(tQ, ' 7tr> ,

and use the result F(t;) W Fy(ty) = FQ#(tl,tQ)\LU(Ll).
¢*) Verify in the case r = 1, s = 2 that

Fl(tl + -+ tr—&-s)(FrﬁS_l(tla e atr; tr-i—?a cee 7t7"+s)|u_l(r,sfl)
T EE (tay st terty trray - o trrs) lwGre1.0) = Frps(tiy - oy trps) lurs) -


https://en.wikipedia.org/wiki/Generating_series
https://en.wikipedia.org/wiki/Iterated_integral
https://en.wikipedia.org/wiki/Regularization_(physics)
https://en.wikipedia.org/wiki/Regularization_(physics)

Exercise 7.3: (5 points)

/ / dxq dz, 1 a\’
o e Ly (o)
1 T, r! b

a>xy>->xr>b

a) Prove that

b) Let
s1—1
——f
dty  dtg,_; dt
o= [ f T
i lsy—1 1 —tg
1=e>61>>ts) 4. 45, >0
. dt51+"'+5k—1+1 o dt51+---+sk71 dt$1+"'+5k
t51+“'+8k71+1 t51+...+5k_1 1 - z581-1-'“-1-51@- ’
s;;:l

as in the Kontsevich integral representation of ((sy,...,sx). Use a) to express (.(1,1,2).
c) Let

Foc(zy,...,z,) = Z Co(sy,. oy sp)ai e in Tt

81,.,5n 21

be the generating series of ‘approximate’ multiple zeta values and
Fﬁg(ml,...,xn) =FL (1 +xo+ - F Tt F Ty, Ty)
Check explicitly that

Fi, (1) F, (o, ts) = Fi, (bt t3) | )
Exercise 7.4: (5 points)

a) Let A(u) = e"IT'(1+wu), where v = 0.577 ... is the Euler-Mascheroni constant and I'(¢)
is the Gamma function. Show that

A =14 300 ({13l

£>1

b) Expand A(u) = >, vxu¥, and compute v; and vg.



Keywords for the week 25.05-31.05: Radford’s Theorem, Lyndon words, Iterated integral,
shuffle product, shuffle algebral

Exercise 6.1: (5 points)
Prove that the map of (9, L1)-algebras
9T, U] = 9
T — x
U xy

is an isomorphism, so that £ = Q(xg,z1) is a 2-variable polynomial algebra over the
admissible words ° = Q + zo$z.

Exercise 6.2: (5 points)
Let S, ;, with p 4+ ¢ = n and min(p, ¢) > j, denote the set of words in (xox1)? W (xgz1)?
containing the subword 3 exactly j times, not counting multiplicity.

For example,

(xoxl)g LU (xoxl)l = 4(zowq ToT1 ToT1 ToT1)
+ 4(1)?@1 ToT1 ToT1 T1) + 4(x8x1 ToT1 Ty ToT1) + 4(x3x1 T Tl TolT)

+ 4(zozq x%xl xor1 1) + 4(ToT1 x%xl x1 Tox1) + 4(xox1 ToTy x%xl x1).

So Sy, is given by the first line, while Sy ; is given by the second and third lines. However

for Syo we need to consider (zoz1)? W (xoz1)?. (Does S, ; depend on the decomposition

of n = p+ ¢? What is the cardinality of S,,;7)
a) Show that

winpa) o 2

oy ey =3 ¢ TH)(F w).
WESptq,5

b) Use the above to show

n

Z (=1)" [(moxl)n_r LU (xoxl)"w} =4" (x%xf)

r=—mn

c) Use the above, and the evaluation (({2}") =
terms of 74"

2r+1) to give a formula for (({3,1}") in

Exercise 6.3: (5 Punkte)
(Additional)

a) Calculate ¢I'(1,1,1) and ¢I(1,1,1).


https://www.sciencedirect.com/science/article/pii/0021869379901716
https://en.wikipedia.org/wiki/Lyndon_word
https://en.wikipedia.org/wiki/Riffle_shuffle_permutation
https://en.wikipedia.org/wiki/Shuffle_algebra

b) Prove that for admissible s

mn

T
G({1}"s) = C(s)—| + lower order terms, and
n!

n

T
Cu({1}"s) = C(s)—' + lower order terms.
n!

Exercise 6.4*: (5 points)
Let A = (Q(A),w) be the shuffle algebra over some set of letters with an order A =
{ap < a; < --- < ar}. Wecall a word w # 1 € A* a Lyndon word if whenever w = uwv,
with u,v € A*\ {1}, we have w < v in the induced lexicographic order on A*.

a) Compute the Lyndon words of length < 4, for A = {zy < 21}.
b) Show that the following are equivalent characterisations of Lyndon words.
ew is the unique minimal element (in the lexicographic ordering) of all non-trivial rota-

tions of w. (A rotation of w = zyx5 - - - x,, means a word of the form z;x; 1 - - - T,y -+ - ;1
i=1,...,n.)

olf w = uv, with u,v € A*\ {1}, then u < v.

¢) Suppose w = (7'05% - - - £}F is a factorisation of w into a concatenation of Lyndon words
with ¢; > fy > --- > {; of maximal length. Show that

O 0 = (31!---3k!)w+2auu

for some coefficients «,.

d) Let L = {¢| ¢ € A* is a Lyndon word}. Use b) to prove that the Lyndon words are
algebraically independent, and hence that L is a polynomial basis for A.

Hint: This is Radford’s Theorem.

10



Keywords for the week 18.05-24.05: Alphabet, Free non-commutative algebra, Regulari-
sation, Shuffle, Quasi-shuffle, Hoffman isomorphism.

Additional background: Michael E Hoffman and Kentaro Ihara. 'Quasi-shuffle products
revisited, (2017)

Exercise 5.1*: (5 points)
Let

o {1,2,... 0+0} > {1,2,...,0+ ¢ —r} surjective, }

SHE )= {7000 o0 < v < 6) s € 1 1) < o 9 < < (64 )

Show the following stuffle product expression is well-defined and correct

(€(s),£(s"))
C(S)C(S/) = Z Z C(S”(J)la ceey S”(O—)@‘i-f’—?“) y
r=0

(S
St(€(s),L(s")ir)

min

where
Si if o7 (k)={i}, 1 <4
S/I(U)k = s; if 0_1(]{) = {f +]}
si+s; it o7t (k)={i,0+j}, i< L.
Exercise 5.2: (5 points)

Prove that the quasi-shuffle product *,: Q(A) x Q(A4) — Q(A) is associative.

Exercise 5.3: (5 points)
Compute

a) Yalb * Ye,
b) Yap * Yeya and,
¢) YaYbYe * Yale-

Exercise 5.4*: (5 points)
Using the notation from lectures, let w = yi"w, € H' with m > 0 and wy € H°. Show
that

11


https://en.wikipedia.org/wiki/Free_monoid#Kleene_star
https://en.wikipedia.org/wiki/Free_algebra
https://en.wikipedia.org/wiki/Regularization_(physics)
https://en.wikipedia.org/wiki/Regularization_(physics)
https://en.wikipedia.org/wiki/Shuffle_algebra
https://arxiv.org/abs/math/9907173
https://arxiv.org/abs/math/9907173
https://www.sciencedirect.com/science/article/abs/pii/S0021869317301746
https://www.sciencedirect.com/science/article/abs/pii/S0021869317301746

=0

b) — 1 i

w=)  reg, (v "wo) *y]

i=0
1 1 1
I () e (e = (o oo e
1 —yu I —yu 1 —yu

Exercise 5.5: (5 points)

Calculate the stuffle-polynomials and stuffle-regularised multiple zeta values
a) (.(1,k) and

Check that a) matches with the previous calculation seen in the lectures via the depth 2
generating series.

Exercise 5.6: (5 points)
Let Y = {y1,¥2,...,} be a countable alphabet and let W = x,, induced from the ‘zero-
product’ y;0y; = 0 on QY. Proceed as follows to show that (Q(Y), ) = (Q(Y), %),
where *¢ is some quasi-stuffle product induced from y; 4 y;).

Let A = (A\q,...,A,) be a composition of ¢ (i.e. A\ +---+ A\, = ¢, and the order of
ALy ..., Ay is important). We write C(¢) for the set of all such compositions. For a word
w = ajasy...a; € Q(Y) of length ¢(w) = ¢, A acts on w by

)‘[w] = [ah az, ... aah] [ai1+17 Ajy 425 - - - >ai1+i2} e [ai1+---+in—17ai1+---+in—1+17 cee ,Cl@] 5
N 7/ .
TV VvV '
first 41 terms next 72 terms last 4., terms
where [a1,as,...,a,] = a;4a24 - - - a,. Define

(w) > ! Alw]

explw) = — AW
P Ml

and o)
—1)w)—n
log(w) = > (A-)-—-)\[M]
(A1 An)EC(E(w))
and extend this by linearity to Q(Y). (Note both functions use ¢.)
The goal is to show exp(w) is an isomorphism from (Q(Y), w) = (Q(Y'), x4 ), with inverse
given by log(w).
a) Compute exp(w) and log(w) for w = i, ¥i,, W = i, Yi,Yis and w = y;,Yi, YisYi,- Check
that log(exp(w)) = w and exp(log(w)) = w.
b) Compute exp(y;, yi, LU i) and compare with exp(yi, ¥i, ) *¢ €xp(yi,), similarly compute

2

?
and compare exp(¥i, Yi, i, L Yiy) = eXP(Yi,YioYis) *o €XD(Ysy) and exp(Ys, YiyYis W YiyYis) =
exp(Yi,YirYis) *& €XP(YisYis)-

12



c*) Show generally that exp olog = id and log o exp = id.
Hint: If f(z) = a1z + 37,5, a;2’, with o-inverse f~'(x) = bz + 3., biz", show that

U (w) = > ay, - ayNw] and Wy (w) = > by, - - - by, A[w]

are also inverses. How does the coefficient of pw], p € C(4(w)), in W o Uy | arise?
d*) Show generally that exp(w L w') = exp(w) *¢ exp(w’).

Hint: Each side is a sum of rational multiples of [S1, 71][S2, 1] - - - [Sk, Tk], where each S;
a subseuqence of w and each T} is a subsequence of w’. Compare the coeflicient of this
on each side.

From part ¢) and d) we conclude that exp(w) is an isomorphism.

13



Keywords for the week 11.05-17.05: |(Extended) period polynomials.

Additional background: Winfried Kohnen and Don Zagier. ‘Modular forms with rational
periods| (1984)

Recall Vj, = spang {Xf’ng’l | r+s=kFkmrs> 1} is the space of two-variable, degree
k — 2 polynomials.

Exercise 4.1: (5 points)
Assume k is even, and define the pairing (-,-): Vi x Vi = Q, by
1 o b
(F (X0, X0, G(X0, X)) = = =gy Fl=af %) (GO0, X)) |

Check that this is a non-degenerate bilinear PGLy(Z)-invariant pairing (i.e. (F|,,G|,) =
(F,G), for v € PGLy(Z), see Ex 3.2), and that

r— s— m— n— (_1)T
<X1 1X2 17X1 1*X2 1> :—5(T,S):(n,m)v

)

where J, is the Kronecker delta (i.e. 6, = 1 if @ is true, and d, = 0 if e is false).

Exercise 4.2: (5 points)
a) Use the pairing from Ex 4.1 to show that

V;CZVI:EBV;;

is an orthogonal decomposition, where V;* = {f € Vi | f|l. = £f} is the +1-cigenspace
of €. (See Ex 3.3.)

b) Show also that
vk: _ ‘/kev,Jr D Vkev,f ® Vkod,Jr D Vkod,f

is an orthogonal decomposition, where V¢ and V,°¢ are the (+1)- and (—1)-eigenspaces
of 4, respectively and V,:V’i = V& NVE and VkOd’i =VednvE

c) Use this to decompose X2, X3, X§, X0 according to the description of Vj in b). Can
you find a general formula for X527

Exercise 4.3: (5 points)
Use Molien’s Theorem from Ex. 2.1, to compute the dimensions of V", V& and VkT715,
where V" = V¢ is the +1-eigenspace of ¢ (see Ex 3.3) and

VM ={feVilflu=1r}
b) Calculate the dimensions of V,QT’8 and VkT’a, where
VM = {f € Vie| flan = Fla, = f}-

14


https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BF01245085/fulltext.pdf
https://people.mpim-bonn.mpg.de/zagier/files/scanned/ModFormsRatPeriods/fulltext.pdf
https://people.mpim-bonn.mpg.de/zagier/files/scanned/ModFormsRatPeriods/fulltext.pdf

Exercise 4.4: (5 points)
a) Give formulae for

Cleviev) = > ai;C(i, )

i,7 odd
in the cases ((2,2), ((4,2), ((2,4), ((6,2), ((4,4) and ((2,6).

b*) Give a general formula for ((ev,ev) in terms of ((od, od).

Exercise 4.5*: (5 points)
Let V be a vector space over a field K. Suppose that (-,-): V' xV — K is a non-degenerate
pairing. Show that Hom(V, K) = {{v,): V — K |v € V}.

Exercise 4.6: (5 points)
a) For k = 4,6,8,12, check that pj, == 2((X}*)|14-—s7)|7-1_1 gives the relation
(k—2)/2
4 ) a(2i+1,k—2i—1) =a(k) (%)
i=1

as claimed in lectures by computing (X5 *)|14.—s7), R4), and

(i, A) = (X372 1esr) las, A) = (X577 14e-s7) Ala)

where A* = (1 +¢)(T~! — 1) is the adjoint to A.
b*) Give a general proof that py gives the relation (x)

Exercise 4.7*: (5 points)
-1 _
Write Vi ™ = {f € VI | fla_g)a-s = 0}.

a) Check that 0 — Vkal(s’a — YT Moeym 175 W, — 0 is a short exact sequence for
k=4,6,8 and 12.
Hint: Make use of a computer algebra systems.

b) Show that we have a splitting

-1 -1 1— .
0 —— VI % — yTsm 2y - ()
v
(T +9)
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Keywords for the week 04.05-10.05: Bernoulli numbers, Slash operator, (Extended) period
polynomials, Period, Power series Ansatz

Exercise 3.1: (5 points)
Define the sequence {qz, }, recursively by ¢, = 1, and

n—1

2
n = n— 9 > 1 .

q2 o 11 ;CJ%QQ( k) n

Prove that o qn
.= (—1)" 1 By, .
@ = (0" 55 i B

where By, is the k-th Bernoulli number.
Exercise 3.2: (5 points)

Given a function f(Xi, X») and v = (24), we set f|, (X1, X2) = f(aX1+bXs, cXq +dXy).
Show that if f € Vi = spang {X{’1X§’1 |r+s=k,rs> 1}, degree k — 2 homogeneous
polynomials, and v € SLy(Z), then f|, defines a group action. If k is even, f € Vj, and
v € PSLy(Z), show that f|, also defines a group action.

Exercise 3.3*: (5 points)

Set
0 -1 1 -1 1 1
s=(1 o) = 0) m=0)
(01 (-1 0 r 112
(0D = ( ), e

Show the following identities hold (modulo £1):

SP=U3=1, T=US, S =eb,
§=Se=¢eS, U?=cUs, T =676,
T =eTe, (T '=8TS, T 'eT = STe
Exercise 3.4: (5 points)

Set

Wi ={f €Vi| flixs = flizv+v2 =0}, and
WE=W,nNVE,

where V= = {f € Vi | f|. = £f} is the 41-eigenspace of «.
a) Show that Wk = {f S ‘/k | f|1—T—T’ = 0}
b) Show that W= = {f € Vi | fli_r=r. = 0}.
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https://en.wikipedia.org/wiki/Bernoulli_number
https://people.mpim-bonn.mpg.de/zagier/files/tex/UtrechtLectures/UtBook.pdf
https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BF01245085/fulltext.pdf
https://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BF01245085/fulltext.pdf
https://en.wikipedia.org/wiki/Period_(algebraic_geometry)
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¢*) Indicate why W, = Sy, and W~ = M, where Sy and M, are the spaces of cusp forms
and modular forms of weight k& for SLy(Z) respectively.

d*) Introduce /W,j ={f € Vi| flice = flixs = flisvrvz = O}, the space of extended
period polynomials, where

~ X{Cfl Xécfl
r—1ys—1
Vk:SpanQ{X1 X5 |r+s:k,r,320}:Vk@ X, Q& X, Q.
Calculate W, for 2 < k < 8, and indicate why W, 2 M.
Exercise 3.5*: (5 points)

Consider the differential equation

{f'm = f(x),
f0)=1.

Make the power series Ansatz

fla) =3 ais'

i=0
and use this to compute the first few coefficients a;, 0 < ¢ < 4, and to find a recursive
formula for the coefficients a;.
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Keywords for the week 27.04-03.05: Generating series, Regularisation), [Partial fraction
expansion, Euler sum formula

Exercise 2.1: (5 points)
a*) Prove Molien’s Theorem: Let G C GL,,(K) be a finite group acting on the vector space
of polynomials K[zy,...,,] over a field K C C through (z1,...,2,)" — g(21,...,2,)"
for g € G. Let x: G — K* be a character and write

K[xl,...,xn]EkG)’X) = {fEK[xl,...,xn]

f homogeneous of degree k, and }
flg-2) =x(9)f(z) forall g € G

for the space of (relative) invariant polynomials of degree k. Then we have

| Con 1 x(9)
ZdnnK (K[wu---,l’n](k)x)tk - @Zm
k=0 9e¢

b) Apply Molien’s Theorem to the double-shuffle spaces

DSs(k) = f € Q[z,y] homogeneous | f(z,y) + f(y,z) =0,
2\h) = of degree k fle+y,y)+ flx+y,z)=0

to compute dimg DSs(k). Hence obtain the bound Dy, < |*22] from IThara-Kaneko-
Zagier.

Hint: Show that G = (t,p) where t = (9}) and p = (12%) acts on Q[z,y], and
(Qlz, y)){gY = DSa(k). What is y?.

Exercise 2.2: (5 points)
a) Let K be a field, and A, be a connected graded K-algebra, such that each Ay is finite
dimensional; recall connected means Ao = 0 and Ay = K. Set L, = Ay/(A, N A2Z),
show that

dimy £;, = number of generators of A in degree k .

b) Suppose A, , is a connected bigraded K-algebra, such that each Ay, is finite dimen-
sional. Set Ly = Ago/(Ags N Ai(op)), show that

dimg Ly = number of generators of A in degree (k, /).

c¢) Recall that a filtered (connected) graded K-algebra A, is one where the filtration is
compatible with the grading in the sense that Fy A = @, FyAy. Set

Are = grf Ax = Fo A/ Fr1 Ay

Show that Aee = €D, , Are is a (connected) bigraded algebra.
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Exercise 2.3: (5 points)
a) Prove Euler’s sum formula using the identities in Ex 2.4, for p > 1

[\

bS]

(p—n,n+1)=(p+1).

S
I
o

b) Reformulate Euler’s sum formula to evaluate ((p, 1) in terms of Riemann zeta values.
Hence evaluate ((3,1),((4,1),¢(5,1) as polynomials in Riemann zeta values.

c*) Use Nielsen’s reduction formula to evaluate all double-zeta values of weight < 7 as
polynomials in Riemann zeta values. How far can you get in weight 8?7 (Don’t expect to
evaluate everything in weight 8.)

d*) Compare your observations from ¢*) with the numbers you obtained in Ex 2.1 b).

Exercise 2.4*: (5 points)
a) Fix integers i, 7 > 1, prove the partial fractions expansion

1 r—1 1 r—1 1
I N A IR () W S
XY j—1)(X+Y)Xs i—1)(X+Y)Ys

r+s=i+j
r,s>0

Hence show the relation

e =S[00 (25 ek

b) Check the following partial fractions expansion, for = # a

1 -1

1 qp g+n—1 Z p+n—1 (=1)m
P(x — a)l “\ ¢—1 jar ”a‘H” artn(z —a)r

n= =0

Hence show Nielsen’s reduction formula, that for p > 1,¢ > 1

(P )t - qii(“q‘ﬁﬂ (lp—n.q+n)
+<—1>q-1(p;f]2)<<<p+q>+<<p+q—1,1>>.

¢) How do the expansions in part a) and b) differ?

19



Keywords for the week 20.04-26.04:
Riemann zeta function, Bernoulli numbers, Multiple Zeta Values, Stuffle product, Basel
problem.

Exercise 1.1*: (5 points)
Sketch a proof of Apéry’s theorem.

Hint: The following pages Apéry’s constant, Apéry’s Theorem, or Section 5.4 of The
1-2-3 of Modular Forms are useful.

Exercise 1.2*: (5 points)
a) Prove that the Taylor expansion of log(I'(1 — z)) at z = 0 is given by
log(T(1 — 2) i C—
—~ k

where 7 is the Euler-Mascheroni constant defined by
i (5L tog(n)
7= Jim (2 s
b) Give examples of other functions whose Taylor coefficients contain zeta values.

Exercise 1.3*: (5 points)
Prove Euler’s partial fraction expansion formula for the cotangent:

1
t( = — eR\Z).
7 cot(mx) x+z(x+n x—n) (x \Z)

Exercise 1.4: (5 points)
Show that the numbers d in Zagier’s Conjecture satisfy

dexk = 1_; —3 and hm (dk —ark) =0

k—o0
k>0

for some constant o, where r ~ 1,324717 ... is the real root 2® — 2 — 1.

Exercise 1.5: (5 points)
Prove that if Z is a graded algebra, then ((k) is transcendental for all & > 1.

Exercise 1.6: (5 points)
Show that Hoffman’s Conjecture implies Zagier’'s Conjecture if Z is a graded algebra.
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Exercise 1.7: (5 points)
a) Describe the products ((2)((2), ¢(2){(2,2) and ((5,2)((3,4) as linear combinations of
multiple zeta values.

b) Show that ((p)* = 2((p,p) + ((2p), p > 1 integer.
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