
Fachbereich Mathematik
Algebra und Zahlentheorie

VL Multiple Zeta Values SS 2020

Problem sheet - Multiple Zeta Values
Starred∗ questions are bonus questions.

Discussion on 09.07 at 11:30: Ex 10.1 – Ex 10.4
Discussion on 02.07 at 11:30: Ex 9.1 – Ex 9.3

Keywords for the week 29.06.20–05.07.20: (Drinfeld) associator, Mould, Bimould, Alter-
nal, Alternil

Exercise 10.1: (5 points)
Let a = ai1ai2 · · · ail and define the mould M• : A→ k(u1, u2, u3, . . .) by

(M | a) =

{
0 if a = ∅ or if a has a repeated letter, and

1
ui2−ui1

1
ui3−ui2

· · · 1
ui`−ui`−1

otherwise .

a) Check that for depth ` ≤ 4, the condition for M to be alternal, i.e.

M(u1, . . . , ur)�M(ur+1, . . . , ur+s) = 0

for r, s ≥ 1, r + s ≤ 4 is satisfied.

b?) Write down all the equations in depth ` = 5 which must be satisfied for M to be
alteral. Check these equations hold.

Exercise 10.2: (5 points)
a) Let M• : A∗ → kJu1, v1, u2, v2, u3, v3, . . .K be a bimould, and define the swap by

swap
(
M

(
u1, u2, . . . , u`
v1, v2, . . . , v`

))
= M

(
v`, v`−1 − v`, . . . , v1 − v2

u1 + · · ·+ u`, u1 + · · ·+ u`−1 . . . , u1

)
.

Check that the function composition swap ◦ swap = id holds.

b) Let m = (0, . . . , 0,mr,mr+1, . . . , ) be an alternil bimould such that mi = 0 for i ≤ r
and mr 6= 0. Show that the mould (0, . . . , 0,mr, 0, . . .) concentrated in depth r (by abuse
of notation just mr), is an alternal bimould.

Exercise 10.3: (5 points)
let F`(x1, . . . , x`) =

∑
s1,...,s`≥1 ζ

∗(s1, . . . , sl)x
s1−1
1 · · · xs`−1

` be the generating series of stuffle
regularised multiple zeta values of depth `. Viewing F = (F0, F1(x1), F2(x1, x2), . . .) as a
mould show that

Fr(x1, . . . , xr) ∗ Fs(xr+1, . . . , xr+s) = Fr(x1, . . . , xr) · Fs(xr+1, . . . , xr+s) .
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Exercise 10.4?: (5 points)
Let

Φ =
∑

w∈{x0,x1}∗
ζ�(w)w

be the Drinfeld associator. Check that Φ is group-like, i.e. under the coproduct given by
∆(xi) = xi ⊗ 1 + 1⊗ xi (so xi is primitive), we have ∆Φ = Φ ⊗̂Φ.

Hint: Make use of the criterion of Friedrichs (see Satz 3.8 in the Masters Thesis of A.
Burmester).
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Keywords for the week 22.06.20–28.06.20: Broadhurst-Kreimer conjecture, Hilbert-Poincaré
series, Hopf algebra, Lie algebra

Exercise 9.1: (5 points)
a) Part of Zagier’s conjecture claims that the algebra Z of MZV’s is graded by the weight.
Assuming this, show that Z is a filtered, graded algebra (filtered by the depth, and graded
by the weight).

b) Let k be a field, and let A and B be filtered graded k-algebras. Show that A⊗k B is
again a filtered graded k-algebra.

Hint: (See also, Deligne “Théorie de Hodge”.)

c?) The show that the map (Q〈t2, t3〉,�)→ Z, ti1 · · · tik 7→ ζ(i1, . . . , ik) cannot extend to
a homomorphism.

Exercise 9.2: (5 points)
Recall

BK0(x, y) =
1

1−O3(x)y + S(x)y2 − S(x)y4
,

where

O3(x) =
x3

1− x2
= x3 + x5 + x7 + · · ·

S(x) =
x12

(1− x4)(1− x6)
= x12 + x16 + x18 + · · · .

Define (gk,`)k≥3,`≥1 through ∏
k≥3,`≥1

(1− xky`)−gk,` = BK0(x, y) .

Assuming the Broadhurst-Kreimer conjecture, then gk,` is the (conjectural) number of
generators of grF (Z0) in weight k and depth `.

a?) Using the Möebius inversion formula (Ex 8.1 below), explain why

gk,` =
∑
d|(k,`)

µ(d)

d
bk/d,`/d ,

where bk,` is the coefficient of xky` in log BK0(x, y).

b) Show that

O3(x)3 =
∑
k≥9
odd

(k − 5)(k − 7)

8
xk .

Check also that

S(x)O3(x) = x15
(11 + 6x2 − 9x4

48(1− x2)3
+

1

8(1 + x2)
+

31 + 15x2 + 15x4

48(1− x6)

)
,
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hence give a formula for the coefficient of xk in S(x)O3(x).

c) Prove that for k odd, we have

gk,3 =

⌊
(k − 3)2 − 1

48

⌋
.

Exercise 9.3?: (5 Points)
Consider the double shuffle space

DS3(d) =
{
f ∈ Q[x1, x2, x3](d)

∣∣∣ f |�(1,2) = f#|�(1,2) = 0
}

and the following sequence

0→ DS3(n)
i−→ Q[x1, x2, x3]H(n)

π−→ Q[x1, x2, x3]G(n) ⊕Q[x1, x2, x3]G
p

(n) → 0 , (∗)

where H = 〈t, ptp−1,−id〉, with t =
(

0 0 1
0 1 0
1 0 0

)
, p−1 =

(
1 0 0
1 1 0
1 1 1

)
. Moreover, G = 〈t, ptp−1, c3〉

and Gp = 〈ptp−1, t, pc3p
−1〉, where c3 =

(
0 1 0
0 0 1
1 0 0

)
, and π(f) = f |�(1,2) ⊕ f |p�(1,2)p−1 .

a) Using Molien’s theorem (Ex 2.1), compute the Molien series of Q[x1, x2, x3]H(n), of
Q[x1, x2, x3]G(n) and of Q[x1, x2, x3]G

p

(n). Assuming (∗) is exact, show that

∑
n≥0

dimQ DS3(n)tn = 1 +
t8(1 + t2 − t4)

(1− t2)(1− t4)(1− t6)
= 1 +

∑
n>0
even

⌊
n2 − 1

48

⌋
tn .

Using that gk,` ≤ dimQ DS`(k − `) from Ihara-Kaneko-Zagier, give a bound on gk,3.

b) Show that the map π is well-defined, and that ker(π) = DS3(n).

Hint: Write the index shuffle operation �(1, 2) = 1 + c2 + c3, where c2 =
(

0 1 0
1 0 0
0 0 1

)
.

c) By considering the dual spaces, show that π is surjective if and only if Q[x1, x2, x3]G(n)∩
Q[x1, x2, x3]G

p

(n) = 0. Using the hint below, conclude that π is surjective.

Hint: Suppose that Γ ⊂ GLn(Z) has finite index, and f : Rn → R is a Γ-invariant
function. Then the function f is constant. (Can you indicate why?)
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Keywords for the week 15.06.20–21.06.20: Hilbert series and Hilbert polynomial, Hilbert-
Poincaré series, Möbius inversion

Exercise 8.1: (5 points)
a?) Let µ(n) denote the Möbius function defined by

µ(n) =


0 if a square divides n,
−1 if n = ±p1 · · · pr with r odd,
+1 if n = ±p1 · · · pr with r even.

Show that ∑
d|n

µ(d) =

{
1 if n = 1,
0 if n > 1.

b) Let (fi)
∞
i=1, (gi)

∞
i=1 be two sequences, which satisfy gn =

∑
d|n fd. Using the result in

part a), show the Möbius inversion formula holds fn =
∑

d|n µ(d)gn/d.

c?) Let Φd(x) be the d-th cyclotomic polynomial, i.e. Φd(x) is the minimal polynomial of
the primitive d-th root of unity ζd = exp(2πi/d). (All other primitive d-th roots of unity
are roots of Φd(x). Why? How many primitive d-th roots of unity are there?)

Let n be a positive integer. Show that
∏

d|n Φd(x) = xn− 1. Use Möbius inversion to give
an explicit formula for Φn (involving polynomial multiplication and division).

Hint: Take logarithms.

Exercise 8.2: (5 points)
a) Let A,B be graded K-algebras. Show the following identities of Hilbert-Poincaré series

HA⊕B(t) = HA(t) +HB(t) ,

HA⊗B(t) = HA(t) ·HB(t) ,

where A ⊕ B and A ⊗ B are define through (A ⊕ B)k = Ak ⊕ Bk and (A ⊗ B)k =∑
i+j=k Ai ⊗Bj, respectively.

b) Compute HA(t) for the polynomial algebras

A = K[x] , A = K[x1, . . . , xn] , A = K[f1, . . . , fn]

where grading is given by degree of the polynomial, and f1, . . . , fn ∈ K[x1, . . . , xn] \ K
are non-constant homogeneous polynomials.

c) Let A = k〈f1, . . . , fn〉 be a free non-commutative polynomial algebra generated by
elements fi in degree deg(fi). Show that

HA(t) =
1

1−
∑n

i=1 t
deg(fi)

.
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d) Let A = Sym(V ) be the symmetric algebra on a (graded) vector space V , i.e. A is
the free polynomial algebra on a basis of V . Show that the Hilbert-Poincaré series of A
satisfies

HA(t) = exp

(
∞∑
n=1

HV (tn)

n

)
.

e?) Using the Hilbert-Serre Theorem, indicate how to prove

HK[x1,x2]/I =
1− tdeg(f) − tdeg(g) + tdeg(f)+deg(g)−deg(gcd(f,g))

(1− t)2
,

where I = (f, g), with f, g ∈ K[x1, x2] \ K non-constant homogeneous polynomials.
Investigate the differences in dimensions for f = xy, g = x2 ∈ K[x, y] and f = xy, g =
x2 + y2 ∈ K[x, y].

Hint: Hint forthcoming

Exercise 8.3: (5 points)
a) Suppose A is a connected graded free Q-algebra, with gk algebra generators in degree
k. Show that

HA(t) =
∏
k≥1

(1− tk)−gk .

b) Let ck be the coefficients of logHA(t). By taking logarithms of the result in part a)
and using Möbius inversion, show that

gk =
∑
d|k

µ(d)

d
ck/d

c) According to Zagier’s conjecture, the algebra of Z of MZV’s has Hilbert-Poincaré series

HZ(t) =
1

1− t2 − t3

According to the standard conjectures on MZV’s Z is connected graded free algebra.
Assuming this, use part b) to show the (conjectural) number of algebra generators gZk of
Z is given by

gZk =
1

k

∑
d|k

µ(k/d)pd

where pd = pd−2 + pd−3, d ≥ 4, with p1 = 0, p2 = 2, p3 = 3. Compute gZk for 1 ≤ k ≤ 20,
with computer assistance.

d?) Check that

HZ(t) =
1

1− t2
· 1

1− t3 − t5 − t7 − t9 − t11 − . . .
,

and explain what interpretation this suggests for the structure of Z.
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Keywords for the week 08.06.20–14.06.20: Generating series, Iterated integral, Regulari-
sation

Exercise 7.1: (5 points)
(Moved from Week 6.) Let

F`(t1, . . . , t`) =
∑

(k1,...,k`)∈(Z>0)`

xk1−1
0 x1 · · ·xk`−1

0 x1 · tk1−1
1 · · · tk`−1

`

be the generating series of depth ` words. Compute the following shuffle products of
generating series, and express them in terms of F`′ .

i) F1(t1)� F1(t2),

ii) F1(t1)� F2(t2, t3), and

iii) F2(t1, t2)� F2(t3, t4).

Exercise 7.2: (5 points)
Check the details of the proof that the F#

` generating series satisfy the shuffle product
relation

F#
r (t1, . . . , tr)� F#

s (tr+1, . . . , tr+s) = F#
r+s(t1, . . . , tr+s)|�(r,s) .

a) Let F`(t1, . . . , t`) be the generating series of depth ` words as in Ex 7.1 above, and let

F#
` (t1, . . . , tr) = Fl(t1 + · · ·+ t`, t2 + · · ·+ t`, . . . , t`) .

Compute explicitly the shuffle product of generating series F#
1 (t1)�F#

2 (t2, t3), and express
it in terms of F`′ and in terms of F#

` .

b?) Show that

Fr(t1, . . . , tr)� Fs(tr+1, . . . , tr+s) = F1(t1 + tr+1)(Fr−1(t2, . . . , tr)� Fs(tr+1, . . . , tr+s)))

+ F1(t1 + tr+1)(Fr(t1, . . . , tr)� Fs−1(tr+2, . . . , tr+s))) .

Hint: Check that

Fr(t1, . . . , tr) = x1Fr−1(t2, . . . , tr) + x0t1Fr(t1, . . . , tr)

= (x1 + x0t1F1(t1))Fr−1(t2, . . . , tr) ,

and use the result F1(t1)� F2(t2) = F#
2 (t1, t2)|�(1,1).

c?) Verify in the case r = 1, s = 2 that

F1(t1 + · · ·+ tr+s)(F
#
r+s−1(t1, . . . , tr; tr+2, . . . , tr+s)|�(r,s−1)

+ F#
r+s−1(t2, . . . , tr; tr+1, tr+2, . . . , tr+s)|�(r−1,s)) = Fr+s(t1, . . . , tr+s)|�(r,s) .
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Exercise 7.3: (5 points)

a) Prove that ∫
· · ·
∫

a>x1>···>xr>b

dx1

x1

· · · dxr
xr

=
1

r!
log
(a
b

)r
b) Let

ζε(s1, . . . , sk) =

∫
· · ·
∫

1−ε>t1>···>ts1+···+sk
>0

s1−1︷ ︸︸ ︷
dt1
t1
· · · dts1−1

ts1−1

dts1
1− ts1

· · · ·

·
dts1+···+sk−1+1

ts1+···+sk−1+1

· · · dts1+···+sk−1

ts1+···+sk−1︸ ︷︷ ︸
sk−1

dts1+···+sk
1− ts1+···+sk

,

as in the Kontsevich integral representation of ζ(s1, . . . , sk). Use a) to express ζε(1, 1, 2).

c) Let
F�,ε(x1, . . . , xn) =

∑
s1,...,sn≥1

ζε(s1, . . . , sn)xs1−1
1 · · ·xsn−1

n ,

be the generating series of ‘approximate’ multiple zeta values and

F#
�,ε(x1, . . . , xn) = F�,ε(x1 + x2 + · · ·+ xn, x2 + · · ·+ xn, . . . , xn) .

Check explicitly that

F#
1,�,ε(t1)F#

2,�,ε(t2, t3) = F#
3,�,ε(t1, t2, t3)|�(1,2) .

Exercise 7.4: (5 points)

a) Let A(u) = eγuΓ(1 +u), where γ = 0.577 . . . is the Euler-Mascheroni constant and Γ(t)
is the Gamma function. Show that

A(u)−1 = 1 +
∑
`≥1

ζT=0
∗ ({1}`)u` .

b) Expand A(u) =
∑

k≥0 γku
k, and compute γ4 and γ6.
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Keywords for the week 25.05–31.05: Radford’s Theorem, Lyndon words, Iterated integral,
shuffle product, shuffle algebra.

Exercise 6.1: (5 points)
Prove that the map of (H0,�)-algebras

H0[T, U ]→ H

T 7→ x0

U 7→ x1

is an isomorphism, so that H = Q〈x0, x1〉 is a 2-variable polynomial algebra over the
admissible words H0 = Q + x0Hx1.

Exercise 6.2: (5 points)
Let Sn,j, with p + q = n and min(p, q) ≥ j, denote the set of words in (x0x1)p � (x0x1)q

containing the subword x2
0 exactly j times, not counting multiplicity.

For example,

(x0x1)3
� (x0x1)1 = 4(x0x1 x0x1 x0x1 x0x1)

+ 4(x2
0x1 x0x1 x0x1 x1) + 4(x2

0x1 x0x1 x1 x0x1) + 4(x2
0x1 x1 x0x1 x0x1)

+ 4(x0x1 x
2
0x1 x0x1 x1) + 4(x0x1 x

2
0x1 x1 x0x1) + 4(x0x1 x0x1 x

2
0x1 x1) .

So S4,0 is given by the first line, while S4,1 is given by the second and third lines. However
for S4,2 we need to consider (x0x1)2

� (x0x1)2. (Does Sn,j depend on the decomposition
of n = p+ q? What is the cardinality of Sp+q,j?)

a) Show that

(x0x1)p� (x0x1)q =

min(p,q)∑
j=0

4j
(
p+ q − 2j

p− j

)( ∑
w∈Sp+q,j

w

)
.

b) Use the above to show

n∑
r=−n

(−1)r
[
(x0x1)n−r � (x0x1)n+r

]
= 4n

(
x2

0x
2
1

)n
.

c) Use the above, and the evaluation ζ({2}r) = π2r

(2r+1)!
to give a formula for ζ({3, 1}n) in

terms of π4n.

Exercise 6.3: (5 Punkte)
(Additional)

a) Calculate ζT∗ (1, 1, 1) and ζT
�

(1, 1, 1).
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b) Prove that for admissible s

ζ∗({1}ns) = ζ(s)
T n

n!
+ lower order terms , and

ζ�({1}ns) = ζ(s)
T n

n!
+ lower order terms .

Exercise 6.4?: (5 points)
Let A = (Q〈A〉,�) be the shuffle algebra over some set of letters with an order A =
{a0 < a1 < · · · < ak}. We call a word w 6= 1 ∈ A∗ a Lyndon word if whenever w = uv,
with u, v ∈ A∗ \ {1}, we have w < v in the induced lexicographic order on A∗.

a) Compute the Lyndon words of length ≤ 4, for A = {x0 < x1}.
b) Show that the following are equivalent characterisations of Lyndon words.

•w is the unique minimal element (in the lexicographic ordering) of all non-trivial rota-
tions of w. (A rotation of w = x1x2 · · ·xn means a word of the form xixi+1 · · ·xnx1 · · ·xi−1,
i = 1, . . . , n.)

•If w = uv, with u, v ∈ A∗ \ {1}, then u < v.

c) Suppose w = `s11 `
s2
2 · · · `

sk
k is a factorisation of w into a concatenation of Lyndon words

with `1 > `2 > · · · > `k of maximal length. Show that

`�s11 � · · ·� `�skk = (s1! · · · sk!)w +
∑
u<w

αuu

for some coefficients αu.

d) Let L = {` | ` ∈ A∗ is a Lyndon word}. Use b) to prove that the Lyndon words are
algebraically independent, and hence that L is a polynomial basis for A.
Hint: This is Radford’s Theorem.
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Keywords for the week 18.05-24.05: Alphabet, Free non-commutative algebra, Regulari-
sation, Shuffle, Quasi-shuffle, Hoffman isomorphism.

Additional background: Michael E Hoffman and Kentaro Ihara. Quasi-shuffle products
revisited (2017)

Exercise 5.1?: (5 points)
Let

St(`, `′; r) =

{
σ : {1, 2, . . . , `+ `′}� {1, 2, . . . , `+ `′ − r} surjective,
σ(1) < σ(2) < · · · < σ(`) and σ(`+ 1) < σ(`+ 2) < · · · < σ(`+ `′)

}
.

Show the following stuffle product expression is well-defined and correct

ζ(s)ζ(s′) =

min(`(s),`(s′))∑
r=0

∑
σ∈

St(`(s),`(s′);r)

ζ(s′′(σ)1, . . . , s
′′(σ)`+`′−r) ,

where

s′′(σ)k =


si if σ−1(k) = {i}, i ≤ `

s′j if σ−1(k) = {`+ j}
si + s′j if σ−1(k) = {i, `+ j}, i ≤ ` .

Exercise 5.2: (5 points)
Prove that the quasi-shuffle product ∗� : Q〈A〉 ×Q〈A〉 → Q〈A〉 is associative.

Exercise 5.3: (5 points)
Compute

a) yayb ∗ yc,
b) yayb ∗ ycyd and,

c) yaybyc ∗ ydye.

Exercise 5.4?: (5 points)
Using the notation from lectures, let w = ym1 w0 ∈ H1 with m ≥ 0 and w0 ∈ H0. Show
that
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a)
reg∗(w) =

m∑
i=0

(−1)i

i!
y∗i1 ∗ ym−i1 w0

b)
w =

m∑
i=0

1

i!
reg∗(y

m−i
1 w0) ∗ y∗i1

c) regT∗

( 1

1− y1u
w0

)
= reg∗

( 1

1− y1u
w0

)
eTu =

(
exp∗(−y1u) ∗ 1

1− y1u
w0

)
eTu

Exercise 5.5: (5 points)
Calculate the stuffle-polynomials and stuffle-regularised multiple zeta values

a) ζ∗(1, k) and

b) ζ∗(1, 1, k).

Check that a) matches with the previous calculation seen in the lectures via the depth 2
generating series.

Exercise 5.6: (5 points)
Let Y = {y1, y2, . . . , } be a countable alphabet and let � = ∗�, induced from the ‘zero-
product’ yi � yj = 0 on QY . Proceed as follows to show that (Q〈Y 〉,�) ∼= (Q〈Y 〉, ∗�),
where ∗� is some quasi-stuffle product induced from yi � yj).

Let λ = (λ1, . . . , λn) be a composition of ` (i.e. λ1 + · · · + λn = `, and the order of
λ1, . . . , λn is important). We write C(`) for the set of all such compositions. For a word
w = a1a2 . . . a` ∈ Q〈Y 〉 of length `(w) = `, λ acts on w by

λ[w] = [a1, a2, . . . , ai1 ]︸ ︷︷ ︸
first i1 terms

[ai1+1, ai1+2, . . . , ai1+i2 ]︸ ︷︷ ︸
next i2 terms

· · · [ai1+···+in−1 , ai1+···+in−1+1, . . . , a`]︸ ︷︷ ︸
last in terms

,

where [a1, a2, . . . , an] = a1�a2� · · ·�an. Define

exp(w) =
∑

(λ1,...,λn)∈C(`(w))

1

λ1! · · ·λn!
λ[w]

and

log(w) =
∑

(λ1,...,λn)∈C(`(w))

(−1)`(w)−n

λ1 · · ·λn
λ[w]

and extend this by linearity to Q〈Y 〉. (Note both functions use �.)

The goal is to show exp(w) is an isomorphism from (Q〈Y 〉,�) ∼= (Q〈Y 〉, ∗�), with inverse
given by log(w).

a) Compute exp(w) and log(w) for w = yi1yi2 , w = yi1yi2yi3 and w = yi1yi2yi3yi4 . Check
that log(exp(w)) = w and exp(log(w)) = w.

b) Compute exp(yi1yi2� yi3) and compare with exp(yi1yi2) ∗� exp(yi3), similarly compute
and compare exp(yi1yi2yi3 � yi4)

?
= exp(yi1yi2yi3) ∗� exp(yi4) and exp(yi1yi2yi3 � yi4yi5)

?
=

exp(yi1yi2yi3) ∗� exp(yi4yi5).

12



c?) Show generally that exp ◦ log = id and log ◦ exp = id.

Hint: If f(x) = a1x+
∑

i≥2 aix
i, with ◦-inverse f−1(x) = b1x+

∑
i≥2 bix

i, show that

Ψf (w) =
∑

(λ1,...,λn)∈C(`(w))

aλ1 · · · aλ`λ[w] and Ψf−1(w) =
∑

(λ1,...,λn)∈C(`(w))

bλ1 · · · bλ`λ[w]

are also inverses. How does the coefficient of µ[w], µ ∈ C(`(w)), in Ψf ◦Ψf−1 arise?

d?) Show generally that exp(w� w′) = exp(w) ∗� exp(w′).

Hint: Each side is a sum of rational multiples of [S1, T1][S2, T2] · · · [Sk, Tk], where each Si
a subseuqence of w and each Tj is a subsequence of w′. Compare the coefficient of this
on each side.
From part c) and d) we conclude that exp(w) is an isomorphism.
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Keywords for the week 11.05-17.05: (Extended) period polynomials.

Additional background: Winfried Kohnen and Don Zagier. Modular forms with rational
periods (1984)

Recall Vk = spanQ
{
Xr−1

1 Xs−1
2 | r + s = k, r, s ≥ 1

}
is the space of two-variable, degree

k − 2 polynomials.

Exercise 4.1: (5 points)
Assume k is even, and define the pairing 〈·, ·〉 : Vk × Vk → Q, by

〈F (X1, X2), G(X1, X2)〉 = − 1

(k − 2)!
F (− ∂

∂X2
, ∂
∂X1

)
(
G(X1, X2)

)∣∣∣
(0,0)

Check that this is a non-degenerate bilinear PGL2(Z)-invariant pairing (i.e. 〈F |γ, G|γ〉 =
〈F,G〉, for γ ∈ PGL2(Z), see Ex 3.2), and that

〈Xr−1
1 Xs−1

2 , Xm−1
1 Xn−1

2 〉 =
(−1)r(
k−2
m−1

)δ(r,s)=(n,m) ,

where δ• is the Kronecker delta (i.e. δ• = 1 if • is true, and δ• = 0 if • is false).

Exercise 4.2: (5 points)
a) Use the pairing from Ex 4.1 to show that

Vk = V +
k ⊕ V

−
k

is an orthogonal decomposition, where V ±k = {f ∈ Vk | f |ε = ±f} is the ±1-eigenspace
of ε. (See Ex 3.3.)

b) Show also that
Vk = V ev,+

k ⊕ V ev,−
k ⊕ V od,+

k ⊕ V od,−
k

is an orthogonal decomposition, where V ev
k and V od

k are the (+1)- and (−1)-eigenspaces
of δ, respectively and V ev,±

k = V ev
k ∩ V ±k and V od,±

k = V od
k ∩ V ±k

c) Use this to decompose X2
2 , X

4
2 , X

6
2 , X

10
2 according to the description of Vk in b). Can

you find a general formula for Xk−2
2 ?

Exercise 4.3: (5 points)
Use Molien’s Theorem from Ex. 2.1, to compute the dimensions of V +

k , V ev
k and V T−1δ

k ,
where V +

k = V ε
k is the +1-eigenspace of ε (see Ex 3.3) and

V M
k = {f ∈ Vk | f |M = f} .

b) Calculate the dimensions of V T,ε
k and V T,δ

k , where

V M1,M2

k = {f ∈ Vk | f |M1 = f |M2 = f} .
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Exercise 4.4: (5 points)
a) Give formulae for

ζ(ev, ev) =
∑
i, j odd

ai,jζ(i, j)

in the cases ζ(2, 2), ζ(4, 2), ζ(2, 4), ζ(6, 2), ζ(4, 4) and ζ(2, 6).

b?) Give a general formula for ζ(ev, ev) in terms of ζ(od, od).

Exercise 4.5?: (5 points)
Let V be a vector space over a fieldK. Suppose that 〈·, ·〉 : V ×V → K is a non-degenerate
pairing. Show that Hom(V,K) ∼= {〈v, ·〉 : V → K | v ∈ V }.

Exercise 4.6: (5 points)
a) For k = 4, 6, 8, 12, check that pk := 2

(
(Xk−2

2 )|1+ε−ST
)
|T−1−1 gives the relation

4

(k−2)/2∑
i=1

a(2i+ 1, k − 2i− 1) = a(k) (∗)

as claimed in lectures by computing 〈(Xk−2
2 )|1+ε−ST

)
,RA〉, and

〈pk,A〉 = 〈(Xk−2
2 )|1+ε−ST

)
|∆? ,A〉 = 〈(Xk−2

2 )|1+ε−ST
)
,A|∆〉

where ∆? = (1 + ε)(T−1 − 1) is the adjoint to ∆.

b?) Give a general proof that pk gives the relation (∗)

Exercise 4.7?: (5 points)
Write V T−1δ,sym

k = {f ∈ V T−1δ
k | f |(1−δ)(1−ε) = 0}.

a) Check that 0 → V T−1δ,ε
k → V T−1δ,sym 1−ε−−→ W−

k → 0 is a short exact sequence for
k = 4, 6, 8 and 12.

Hint: Make use of a computer algebra systems.

b) Show that we have a splitting

0 V T−1δ,ε
k V T−1δ,sym W−

k 0
1−ε

1
2

(T+δ)
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Keywords for the week 04.05–10.05: Bernoulli numbers, Slash operator, (Extended) period
polynomials, Period, Power series Ansatz

Exercise 3.1: (5 points)
Define the sequence {q2n}n recursively by q2 = 1, and

q2n =
2

2n+ 1

n−1∑
k=1

q2kq2(n−k) , n > 1 .

Prove that
q2n = (−1)n−1 24n

2(2n)!
B2n .

where Bk is the k-th Bernoulli number.

Exercise 3.2: (5 points)
Given a function f(X1, X2) and γ = ( a bc d ), we set f |γ(X1, X2) = f(aX1 +bX2, cX1 +dX2).
Show that if f ∈ Vk = spanQ

{
Xr−1

1 Xs−1
2 | r+ s = k, r, s ≥ 1

}
, degree k− 2 homogeneous

polynomials, and γ ∈ SL2(Z), then f |γ defines a group action. If k is even, f ∈ Vk, and
γ ∈ PSL2(Z), show that f |γ also defines a group action.

Exercise 3.3?: (5 points)
Set

S =

(
0 −1
1 0

)
, U =

(
1 −1
1 0

)
, T =

(
1 1
0 1

)
,

ε =

(
0 1
1 0

)
, δ =

(
−1 0
0 1

)
, T ′:= U2S .

Show the following identities hold (modulo ±1):

S2 ≡ U3 ≡ 1 , T ≡ US , S ≡ εδ ,

δ = Sε ≡ εS , U2 ≡ εUε , T−1 = δTδ ,

T ′ ≡ εTε , (T ′)−1 = STS , T−1εT = STε

Exercise 3.4: (5 points)
Set

Wk := {f ∈ Vk | f |1+S = f |1+U+U2 = 0} , and
W±
k = Wk ∩ V ±k ,

where V ±k = {f ∈ Vk | f |ε = ±f} is the ±1-eigenspace of ε.

a) Show that Wk = {f ∈ Vk | f |1−T−T ′ = 0}.
b) Show that W±

k = {f ∈ Vk | f |1−T∓Tε = 0}.
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c?) Indicate why W+
k
∼= Sk and W−

k
∼= Mk, where Sk and Mk are the spaces of cusp forms

and modular forms of weight k for SL2(Z) respectively.

d?) Introduce Ŵ+
k = {f ∈ V̂k | f |1−ε = f |1+S = f |1+U+U2 = 0}, the space of extended

period polynomials, where

V̂k = spanQ
{
Xr−1

1 Xs−1
2 | r + s = k, r, s ≥ 0

}
= Vk ⊕

Xk−1
1

X2

Q⊕ Xk−1
2

X1

Q .

Calculate Ŵ+
k for 2 ≤ k ≤ 8, and indicate why Ŵ+

k
∼= Mk.

Exercise 3.5?: (5 points)
Consider the differential equation {

f ′(x) = f(x) ,

f(0) = 1 .

Make the power series Ansatz

f(x) =
∞∑
i=0

aix
i ,

and use this to compute the first few coefficients ai, 0 ≤ i ≤ 4, and to find a recursive
formula for the coefficients ai.
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Keywords for the week 27.04–03.05: Generating series, Regularisation, Partial fraction
expansion, Euler sum formula

Exercise 2.1: (5 points)
a?) Prove Molien’s Theorem: Let G ⊂ GLn(K) be a finite group acting on the vector space
of polynomials K[x1, . . . , xn] over a field K ⊂ C through (x1, . . . , xn)> 7→ g (x1, . . . , xn)>

for g ∈ G. Let χ : G→ K× be a character and write

K[x1, . . . , xn]
(G,χ)
(k) =

{
f ∈ K[x1, . . . , xn]

∣∣∣∣ f homogeneous of degree k, and
f(g · x) = χ(g)f(x) for all g ∈ G

}
for the space of (relative) invariant polynomials of degree k. Then we have

∞∑
k=0

dimK

(
K[x1, . . . , xn]

(G,χ)
(k)

)
tk =

1

|G|
∑
g∈G

χ(g)

det(1− gt)
.

b) Apply Molien’s Theorem to the double-shuffle spaces

DS2(k) =

{
f ∈ Q[x, y] homogeneous
of degree k

∣∣∣∣∣ f(x, y) + f(y, x) = 0 ,

f(x+ y, y) + f(x+ y, x) = 0

}

to compute dimQDS2(k). Hence obtain the bound Dk,` ≤ bk−2
6
c from Ihara-Kaneko-

Zagier.

Hint: Show that G = 〈t, p〉 where t = ( 0 1
1 0 ) and p = ( 1 0

1 −1 ) acts on Q[x, y], and
(Q[x, y])

(G,χ)
(k) = DS2(k). What is χ?.

Exercise 2.2: (5 points)
a) Let K be a field, and A• be a connected graded K-algebra, such that each Ak is finite
dimensional; recall connected means A<0 = 0 and A0

∼= K. Set Lk = Ak/(Ak ∩ A2
>0),

show that
dimK Lk = number of generators of A in degree k .

b) Suppose A•,• is a connected bigraded K-algebra, such that each Ak,` is finite dimen-
sional. Set Lk,` = Ak,`/(Ak,` ∩ A2

6=(0,0)), show that

dimK Lk,` = number of generators of A in degree (k, `) .

c) Recall that a filtered (connected) graded K-algebra A• is one where the filtration is
compatible with the grading in the sense that F`A =

⊕
k F`Ak. Set

Ak,` = grFl Ak = F`Ak/F`−1Ak

Show that A•,• =
⊕

k,`Ak,` is a (connected) bigraded algebra.

18

https://en.wikipedia.org/wiki/Generating_function
https://en.wikipedia.org/wiki/Regularization_(physics)
https://en.wikipedia.org/wiki/Partial_fraction_decomposition
https://en.wikipedia.org/wiki/Partial_fraction_decomposition


Exercise 2.3: (5 points)
a) Prove Euler’s sum formula using the identities in Ex 2.4, for p ≥ 1

p−2∑
n=0

ζ(p− n, n+ 1) = ζ(p+ 1) .

b) Reformulate Euler’s sum formula to evaluate ζ(p, 1) in terms of Riemann zeta values.
Hence evaluate ζ(3, 1), ζ(4, 1), ζ(5, 1) as polynomials in Riemann zeta values.

c?) Use Nielsen’s reduction formula to evaluate all double-zeta values of weight ≤ 7 as
polynomials in Riemann zeta values. How far can you get in weight 8? (Don’t expect to
evaluate everything in weight 8.)

d?) Compare your observations from c?) with the numbers you obtained in Ex 2.1 b).

Exercise 2.4?: (5 points)
a) Fix integers i, j ≥ 1, prove the partial fractions expansion

1

X iY j
=

∑
r+s=i+j
r,s>0

(
r − 1

j − 1

)
1

(X + Y )rXs
+

(
r − 1

i− 1

)
1

(X + Y )rY s
.

Hence show the relation

ζ(j)ζ(k − j) =
k−1∑
r=2

[(
r − 1

j − 1

)
+

(
r − 1

k − j − 1

)]
ζ(r, k − r) .

b) Check the following partial fractions expansion, for x 6= a

1

xp(x− a)q
= (−1)q

p−1∑
n=0

(
q + n− 1

q − 1

)
1

xp−naq+n
+

q−1∑
n=0

(
p+ n− 1

p− 1

)
(−1)n

ap+n(x− a)q−n
.

Hence show Nielsen’s reduction formula, that for p > 1, q ≥ 1

ζ(p, q) =

q−2∑
n=0

(−1)n
(
p+ n− 1

p− 1

)
ζ(q − n)ζ(p+ n) + (−1)q

p−2∑
n=0

(
q + n− 1

q − 1

)
ζ(p− n, q + n)

+ (−1)q−1

(
p+ q − 2

p− 1

)
(ζ(p+ q) + ζ(p+ q − 1, 1)) .

c) How do the expansions in part a) and b) differ?
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Keywords for the week 20.04–26.04:
Riemann zeta function, Bernoulli numbers, Multiple Zeta Values, Stuffle product, Basel
problem.

Exercise 1.1?: (5 points)
Sketch a proof of Apéry’s theorem.

Hint: The following pages Apéry’s constant, Apéry’s Theorem, or Section 5.4 of The
1-2-3 of Modular Forms are useful.

Exercise 1.2?: (5 points)
a) Prove that the Taylor expansion of log(Γ(1− z)) at z = 0 is given by

log(Γ(1− z)) = γz +
∞∑
k=2

ζ(k)

k
zk

where γ is the Euler-Mascheroni constant defined by

γ = lim
n→∞

(
n∑
k=1

1

k
− log(n)

)
.

b) Give examples of other functions whose Taylor coefficients contain zeta values.

Exercise 1.3?: (5 points)
Prove Euler’s partial fraction expansion formula for the cotangent:

π cot(πx) =
1

x
+
∞∑
n=1

(
1

x+ n
+

1

x− n

)
(x ∈ R\Z) .

Exercise 1.4: (5 points)
Show that the numbers dk in Zagier’s Conjecture satisfy∑

k≥0

dkx
k =

1

1− x2 − x3
and lim

k→∞

(
dk − αrk

)
= 0

for some constant α, where r ≈ 1, 324717 . . . is the real root x3 − x− 1.

Exercise 1.5: (5 points)
Prove that if Z is a graded algebra, then ζ(k) is transcendental for all k > 1.

Exercise 1.6: (5 points)
Show that Hoffman’s Conjecture implies Zagier’s Conjecture if Z is a graded algebra.
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Exercise 1.7: (5 points)
a) Describe the products ζ(2)ζ(2), ζ(2)ζ(2, 2) and ζ(5, 2)ζ(3, 4) as linear combinations of
multiple zeta values.
b) Show that ζ(p)2 = 2ζ(p, p) + ζ(2p), p > 1 integer.
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