Interpretation of relations $<,>,=,\parallel$ on games

Steven Charlton Numbers! WS 2016/17

1. Definition of the relations

Recall from the surreal numbers section of the course, \leq is defined recursively and forms the most 'basic' relation we have.

Definition 1.1 (\leq). Suppose we have two games (or surreal numbers) $G = \{g^L \mid g^R\}$ and $H = \{h^L \mid h^R\}$. We say $G \leq H$ if and only if no $g^L \geq H$ and $G \geq no h^R$.

We then define further relations in terms of this

Definition 1.2. • $G \ge H$ iff $H \le G$,

• G < H iff $G \leq H$ and $G \geq H$,

• G > H iff $G \not\leq H$ and $G \geq H$,

• G = H iff $G \leq H$ and $G \geq H$.

If G is not related to H in any of the above ways, we have $G \parallel H$, and so

• $G \parallel H$ iff $G \not\leq H$ and $G \not\geq H$.

2. Interpretation of the relations

Theorem 2.1 (Interpretation). If $G = \{ g^L | g^R \}$ is a game, comparing G to $0 = \{ | \}$ tells us the following information about who wins.

- G < 0 iff right wins,
- G > 0 iff left wins,
- G = 0 iff player 2 wins,
- $G \parallel 0$ iff player 1 wins.

Proof. We justify this by induction, dealing with each case in turn.

Case G < 0: If G < 0, then $G \leq 0$ and $G \geq 0$. The former means no $g^L \geq 0$ and $G \geq no 0^R$. The latter means $0 \leq G$, which means some $0^L \geq G$ (no, since $0^L = \emptyset$) or $0 \geq$ some g^R . We want to show that right wins G, by making use of the winning strategies which exist in the parents g^L or g^R .

If right plays first in G, then right can move to some $g^R \leq 0$. If $g^R \geq 0$ holds, then $g^R = 0$ and the new position is a win for the second player. Since it is left's turn to play now, the second player is right. If $g^R \geq 0$, then $g^R < 0$ and right wins the new position, regardless of who plays first.

If left plays first in G, then he can only move to some position $g^L \geq 0$. If we have $g^L \leq 0$, then $g^L < 0$ and right wins. If instead $g^L \leq 0$, then $g^L \parallel 0$, and the first player wins. But in this new position, it is rights turn to play.

The remaining cases are very similar! Check them as an exercise.