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CHAPTER 1

Introduction and Motivation

Lecture 1
18/10/2016

What, exactly, is a number? How can actually prove results about numbers? This
question has no easy answer, and touches on many historical and philosophical
aspects of mathematics.

The ‘natural numbers’ N are maybe the only numbers which did not need to be
discovered, having been known since ancient times. Every other system of numbers
builds on top of the natural numbers (directly, or indirectly) in order to generalise
some desirable/interesting property, or fix some gap/incomplete aspect. The ‘clas-
sical numbers’ Z, Q, R and C all arise by trying to plug gaps with the current
numbers, starting with the lack of negatives in N. This process carries on until we
arrive at the ‘algebraically complete’ field C.

In order to say anything coherent during this process, we really ought to know how
to rigorously define N. Natural numbers, integers, et cetera, satisfy many familiar
properties. Addition is commutative, associative, distributes over multiplication.
But without knowing how to define N, how can any of these properties be proven?

Alternatively, there are many other ways to extend the natural numbers. Moving
from Q to R is an example of metric completion, with respect to the Euclidean
metric on Q. But we can define difference distances on Q, and complete them to
get the p-adic numbers Qp. The natural numbers can be identified as orderings of
points; by extending to infinitely many points we get the ordinal numbers. Or we
can use N to measure sizes, and for infinite sets get the cardinal numbers. We can
add infinite or infinitesimal numbers to R to get the hyperreals. Or we can try to
repeat the construction of the complex numbers C, which leads to the Hamiltonians
H, octonions O, et cetera. Adding infinity in a way which allows an incredible
amount of arithmetic to happen leads us to the surreal numbers.

We will spend most of the time studying the surreal numbers No. The chapters on
surreal numbers are based very much on Conway’s book On Numbers and Games,
with other inspiration drawn from Knuth’s book.

Overview:

• Reminder about the constructions of the classical numbers
• Introduction to surreal numbers, definitions and axioms
• The first few surreal numbers, explicit proofs and properties. Birthday of

a surreal number.
• Numbers born on day ω. Irrational numbers. Infinity ω, infinitesimals
ε = 1/ω, ω − 1, ω/2,

√
ω.

• Inductive proofs for surreal numbers. Idea of a day-sum for descent proofs.
• Arithmetic on surreal numbers, addition, multiplication. The surreal num-

bers form a Field. Properties of addition, multiplication, ordering.
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6 1. INTRODUCTION AND MOTIVATION

• Relation of surreal numbers, real numbers, ordinal numbers. The simplicity
theorem.
• Sign expansion, ωx map, Conway normal form for a surreal number, irre-

ducible numbers. Gaps in the surreal number line.
• Infinite sums of surreal numbers, analysis with surreals. Surreals are real-

closed. Surcomplex numbers No[i].
• Power series, analytic functions of surreal numbers. Exponential, tangent,

logarithm, etc.
• Number theory in the surreals. Omnific integers, continued fractions, War-

ing’s problem.
• Surreal numbers and game theory.
• Open problems, and questions. Calculus on surreal numbers. Problems

with genetic functions, problems with integration



CHAPTER 2

The ‘classical’ numbers: N, Z, Q, R, and C

Here we will review the construction of N using Peano arithmetic, and then see how
to extend to the remaining numbers using (the scarily named) Grothendeick group
to make Z out of N, the field of fractions to make Q out of Z, metric completion to
get R from Q, and algebraic completion to get C from R.

For the purposes of the course, the two most important constructions are going to
be the construction of N itself, and the use of Dedekind cuts to construct R from
Q. Both of these ideas are, in a sense, generalised when we come to construct the
surreal numbers.

1. Peano arithmetic to define N

1.1. The Peano axioms for N. The Peano axioms are used to formally define
the object N. By using them, and a formal definition of addition, and multiplication,
we will be able to rigorously prove all of the ‘familiar’ and ‘intuitive’ properties of
natural numbers.

Axiom 2.1 (Peano axioms). There exists a set N, called the set of natural numbers,
and a function s : N → N, called the successor function. They satisfy the following
axioms

i) 0 is a natural number, that is 0 ∈ N.
ii) For every natural number n, the successor S(n) is a natural number. One should

think of S,
as the ‘plus
1’ function.

iii) For all natural numbers n and m, we have that S(n) = S(m) implies n = m.
That is, S is injective.

iv) For every natural number n, S(n) 6= 0. That is, no natural number has
successor 0.

From this we have the number 0. Then the successor of 0 is S(0), which we will call
1. And the successor of 1 is S(1) = S(S(0)), which we will call 2.

Remark 2.2. These axioms don’t (yet) pin down just the (familiar) natural num-
bers. For example, the following set satisfies all of these axioms

0 1 2 3 4

S

A

C

B

S S S

S

S
S

Without induction, this fits the Peano axioms
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8 2. THE ‘CLASSICAL’ NUMBERS: N, Z, Q, R, AND C

To fix this problem, we need some way to eliminate loops, or chains. We need some
way to state that S generates all natural numbers.

Axiom 2.3 (Induction for Peano Axioms). The induction axiom allows us to prove
a statement is true for all of N, by showing it holds for each successor in turn.

v) Suppose M ⊂ N is a set such that 0 ∈ M , and for each m ∈ M we have
S(m) ∈M . Then M = N.

Alternatively

v′) Suppose φ is an unary predicate, that is φ(n) a true/false statement about
a natural number n. If φ(0) is true, and φ(n) is true implies φ(S(n)) is true.
Then φ is true for all n ∈ N.

Exercise 2.4. Show that the two versions of the induction axiom v) and v′) above
are equivalent.

Exercise 2.5. Give an example of a formula φ which is true for all the ‘standard’
natural numbers, but fails at A above.

Remark 2.6. For technical reasons, logicians often want to replace the ‘second-
order’ induction axiom with a ‘first-order’ axiom scheme. Rather than giving an
axiom which holds for all predicates, one gives an ‘axiom scheme’ where each such
predicate is written individually.

Namely for each formula φ(x, y1, . . . , yk), we add the axiom

v′′) If, for all y1, . . . , yk ∈ N, the formula φ(0, y, . . . , yn) holds, and moreover
for all n, φ(n, y1, . . . , yn) implies φ(S(n), y1, . . . , yn). Then φ(n, y1, . . . , yk)
is true for all natural numbers.

It might seem, at first glance, that the ‘first-order’ axiom scheme is equivalent to
the ‘second-order’ induction axiom. But, for other technical reasons, it is strictly
weaker. Essentially because we can only use finite many axioms at a time, the axiom
scheme is not able to uniquely identify the natural numbers. This leads to notions
of non-standard natural numbers.

1.2. Arithmetic on N.

Definition 2.7 (Addition +). Addition of two natural numbers is defined recur-
sively as follows.

a+ 0 = a

a+ S(b) = S(a+ b) .

Example 2.8. If we call S(S(S(0))) = 3, and S(S(S(S(0)))) = 4, then we compute

3 + 4 = 3 + S(3)

= S(3 + 3)

= S(3 + S(S(S(0))))

= S(S(3 + S(S(0))))

= S(S(S(3 + S(0))))

= S(S(S(S(3 + 0))))
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= S(S(S(S(3))))

= S(S(S(S(S(S(S(0))))))) .

And this last number, we might as well call 7.

We have shown that 3 + 4 = 7, with these definitions.

Theorem 2.9. Addition is associative.

Proof. We want to show that (a + b) + c = a + (b + c), for all natural numbers
a, b, c ∈ N. We will do this by induction using the recursive definition of addition
given above.

The induction will happen on c, so we must first establish the result for the base
case c = 0. This is straight forward. We have

(a+ b) + 0 = a+ b ,

using the + 0 case from the definition of +. For exactly the same reason, we have

a+ (b+ 0) = a+ (b) = a+ b .

Combining these two equalities gives

(a+ b) + 0 = a+ (b+ 0) ,

so the base case c = 0 holds.

Now for the inductive step; we assume that the result holds for c, namely

(a+ b) + c = a+ (b+ c) ,

and we attempt to show the result for S(c). But by the successor case in definition
of +, we have

(a+ b) + S(c) = S((a+ b) + c) .

By the induction hypothesis, we can write this as

= S(a+ (b+ c)) .

Now apply the successor case of +, to get

= a+ S(b+ c) .

Apply the successor case again, to get

= a+ (b+ S(c)) .

This shows the statement holds for S(c), so by induction we conclude that addition
is associative. �

Theorem 2.10. Addition is commutative.

Proof. We want to show that a+ b = b+ a, for all natural numbers a, b ∈ N. We
want to use induction; we have the recursive definition a+ S(b) = S(a+ b).

We first check the case where b = 0. We want to show that a+ 0 = 0 + a, but this
is the case because both sides evaluate to a.

Lemma 2.11. The natural number 0 is the identity element for +. That is 0 + a =
a+ 0 = a, for any a ∈ N.
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Proof. We prove this by induction also. The base case is

0︸︷︷︸
a

+0 = 0 + 0︸︷︷︸
a

= 0 ,

but this holds by property 1 of the definition of addition. Namely 0 is the right
identity of addition.

Now suppose that the statement holds for a. We now show it for S(a). We have
(by definition of +), that

S(a) + 0 = S(a) .

On the other hand

0 + S(a) = S(0 + a) = S(a+ 0) = S(a)

So the result holds by induction. �

Also we prove explicitly the base case b = 1.

Lemma 2.12. For all natural numbers a, we have a+ 1 = 1 + a.

Proof. This is proven by induction, also. The case where a = 0 holds because
0 + 1 = 0 + S(0) = S(0 + 0) = S(0) = 1 = 1 + 0.

Now suppose the result holds for a. Then we get

S(a) + 1 = S(a) + S(0)

= S(S(a) + 0)

= S(S(a+ 0) + 0)

= S((a+ S(0)) + 0)

= S((a+ 1) + 0)

= S(a+ 1)

= S(1 + a)

= 1 + S(a) .

Thus the result holds by induction. �

Now we show the result by induction on b. Suppose that the result holds for b, then
we show it for S(b).

a+ S(b) = a+ (b+ 1)

= (a+ b) + 1

= (b+ a) + 1

= b+ (a+ 1)

+ b+ (1 + a)

= (b+ 1) + a

= S(b) + a .

Thus addition of numbers is also commutative. �

Exercise 2.13. Prove that N is cancellative, that is if x + y = x + z, show that
y = z.
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1.3. Multiplication of natural numbers. Like addition, the multiplication
of natural numbers is also defined recursively.

Definition 2.14 (Multiplication, ·). The multiplication of natural numbers is de-
fined recursively as follows

a · 0 = 0

a · S(b) = a+ (a · b) .

Exercise 2.15. Show that 1 = S(0) is the multiplicative identity. That is, for all
a, we have

1 · a = a · 1 = a .

Exercise 2.16. Show that multiplication is commutative, and associative.

Exercise 2.17. Show that multiplication distributes over addition, namely

a · (b+ c) = (a · b) + (a · c) .

Remark 2.18. In fancy terms, the natural numbers N, with the operations of
addition and multiplication, form a semiring.

1.4. Ordering of natural numbers. With the successor function, we can
define an ordering on Ns, as follow.

Definition 2.19. Let n,m ∈ N. We say that n ≤ m iff there exists k ∈ N such that
m = n+ k.

We say n < m iff n ≤ m and n 6= m.

Exercise 2.20. Prove that for all n,m in N exactly one of the following statements
holds: i) n < m, n = m or n > m.

1.5. A set-theory model for N. Now we have an axiomatic description for
N, including the addition and the multiplication. But how do we know such a thing
as N actually exists? Maybe there is some contradiction within the axioms which is
only revealed after much investigation.

If we accept the axioms of ZF set theory, then the Peano axioms become a theorme.
We can exhibit a set which satisfies all of these axioms; this will prove the axioms
are consistent and give something sensible.

Definition 2.21 (Set-theoretic model for N). The von Neumann model of N is
defined as the smallest set containing the element 0 := { } = ∅, and closed under
the successor function S(n) := n ∪ { n }.
Remark 2.22. The existence of such a set N is guaranteed by the Axiom of Infinity
in Zamelo-Frankel (ZF) set theory. The axiom says there exists a set I, such that

∅ ∈ I and ∀x ∈ I, x ∪ { x } ∈ I .

Remark 2.23. With this model of set theory, the number 3 = S(S(S(0))) is really
the following set

0 = ∅
1 = 0 ∪ { 0 } = ∅ ∪ { ∅ } = { ∅ }
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2 = 1 ∪ { 1 } = { ∅ } ∪ { { ∅ } } = { ∅, { ∅ } }
3 = 2 ∪ { 2 } = { ∅, { ∅ } } ∪ { { ∅, { ∅ } } } = { ∅︸︷︷︸

0

, { ∅ }︸︷︷︸
1

, { ∅, { ∅ } }︸ ︷︷ ︸
2

} ,

et cetera.

2. The Grothendieck group to define Z

Lecture 2
25/10/2016

N is all well, and good. It contains the familiar ‘counting’ numbers 0, 1, 2, 3, . . .. We
can add, and we can multiply, what more do you want? Subtraction and negative
numbers would be useful: historically you would want this in order to describe debts
and credits in financial transactions. Generally, being able to manipulate equations
without unnecessary restrictions would appeal to a mathematician. But trying to
subtract two natural numbers 5 − 12 forces us outside the set of natural numbers.
We need new numbers.

To make Z from N, we need to add negative elements. How does one do this
formally? We don’t know what −n means at the moment, but we would want it to
represent the ‘difference’ between 0 and n. Or between 5 and n+ 5. So we want to
consider pairs (a, b) where a − b is constant. Or rather, rearrange this to say two
pairs (a, b) and (c, d) are equal when a+d = b+c, (keeping in mind (a, b)!′ a−b′.
Definition 2.24. f Consider the equivalence relation ∼ defined on N× N by

(a, b) ∼ (c, d) if and only if a+ d = b+ c .

The set of integers is defined as

Z := N× N/ ∼
Exercise 2.25. Check that ∼ is indeed an equivalence relation. That is, check

i) ∼ is reflexive: x ∼ x,
ii) ∼ is symmetric: x ∼ y implies y ∼ x, and

iii) ∼ is transitive: x ∼ y and y ∼ z implies x ∼ z.

Since we know how to add in N, we can define an addition on Z in a natural way.

Definition 2.26. The addition in Z is defined by

[(a, b)] + [(c, d)] = [(a+ c, b+ d)] .

Exercise 2.27. Check that this addition on Z is well defined. Show that [(0, 0)] is
the additive identity for addition on Z. Show that the additive inverse of [(a, b)] is
[(b, a)].

Now we have a formal construction of Z, we can actually prove things about the
integers.

Theorem 2.28. Addition of integers is commutative, that is

a+ b = b+ a

for any integers a, b ∈ Z.
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Proof. Choose representatives a = (α, β) and b = (γ, δ). Then

a+b = [(α, β)]+[(γ, δ)] = [(α+γ, β+δ)] = [(γ+α, δ+β)] = [(γ, δ)]+[(α, β)] = b+a ,

where we have used that addition in N is commutative. �

Exercise 2.29. Show that addition of integers is associative.

From the above, we get

Theorem 2.30. The integers Z form an abelian group under addition.

Example 2.31. Some elements of K0(N), for example, include

[(5, 2)] = [(6, 3)] = [(120, 117)] 3 .

But we also have
[(2, 5)] = [(3, 6)] = [(117, 120)] ‘−3’ .

We can check that

[(2, 5)] + [(5, 2)] = [(7, 7)] = [(0, 0)] = 0Z ,

so indeed (2, 5) = −3.

2.1. Multiplication of integers. We know how to add integers, by reducing
the addition to that of natural numbers. How should we multiply them?

Definition 2.32. The multiplication on Z is defined by

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)] .

Think that
(a−b)(c−
d) = (ac+
bd)−(ad+
bc)

Theorem 2.33. Multiplication of integers is commutative.

Proof. After choosing representatives, we have that

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)] = [(ca+ db, da+ cb)] = [(c, d)] · [(a, b)]
�

Exercise 2.34. Check that multiplication is associative. Show that 1 = [(1, 0)]
is the multiplicative identity. Show that multiplication distributes over addition.
(Hence Z is a commutative ring.)

Exercise 2.35. Show that Z is an integral domain. That is, if ab = 0, then a = 0
or b = 0.

2.2. Ordering of integers. We can view N ↪→ Z via f : n 7→ [(n, 0)]. We can
use this to define an ordering on Z.

Definition 2.36. We call Z+ := f(N \ { 0 }) ⊂ Z the positive integers.

If a, b ∈ Z, we say
a < b ⇐⇒ b− a ∈ Z≥0 .

Exercise 2.37. Let a ∈ Z. Prove that exactly one of the following statements holds:
i) a ∈ Z+, ii) a = 0, or iii) −a ∈ Z+.

Exercise 2.38. Check that < on Z is consistent with < on N. That is for n,m ∈ N,
show that m < n in N, if and only if f(m) < f(n) in Z.
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2.3. The Grothendeick group in general. The above construction can be
applied to any commutative monoid (set with commutative addition, and identity
element).

Definition 2.39 (Grothendeick group). Let M be a commutative monoid. The
Grothendeick group K0(M) is defined by

K0(M) = M ×M/ ∼ ,

where

(a, b) ∼ (c, d) if and only if a+ d+m = b+ c+m for some m in M .

(The extra +m is necessary because the monoid may not be cancellative. It may
not be true that a+m = b+m implies a = b.)

The addition on K0(M) is defined by

[(m1, n1)] + [(m2, n2)] = [(m1 +m2, n1 + n2)] .

Theorem 2.40. This addition makes K0(M) into a commutative group.

One can find a homomorphic copy of M in K0(M) via f : MtoK0(M) with f(m) =
(m, 0). But f is not necessarily injective, unless M is cancellative.

3. The field of fractions to define Q

So now, we can add, subtract, and multiply. Do we need anything else? How to
divide integers? Trying to divide two integers 3 ÷ 2 forces us outside the set of
integers, so we need some more numbers.

The construction of Q from Z has a very similar flavour to the construction of Z
from N. This is called the ‘field of fractions’ of an integral domain.

Definition 2.41. Let R be a integral domain. Then the field of fractions F =
Frac(R) is the smallest field containing R. More concretely, we can define

Frac(R) = { (a, b) ∈ R×R \ { 0 } } / ∼ ,

where ∼ is the equivalence relation defined by (a, b) ∼ (c, d) iff ad = bc.

We should think that (a, b)! a
b

in this construction.

Definition 2.42. In the case Z, we define Q := Frac(Z).

Exercise 2.43. How should addition and multiplication be defined in Q? More
generally how should addition and multiplication be defined in Frac(R)? Remember
that we want (a, b) to behave like a

b
. Show that this makes Frac(R) into a field.

Exercise 2.44. Show that g : R→ Frac(R), g(r) = [(r, 1)]! r
1

gives an embedding
of R ↪→ Frac(R). (Specifically, check that the operations are compatible, and the
map is injective.)

Exercise 2.45. Set Q+ := { [(a, b)] | a, b ∈ Z+ or a, b ∈ −Z+ }. For p, q ∈ Q, define
p < q iff q − p ∈ Q+. Show that this agrees with < for Z.

The ordering on Q is Archimedean. This means roughly that there are no infinitely
large/infinite small elements. More precisely for any element x ∈ Q, there exists a
natural number n ∈ N, such that x < n.
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4. Metric completition to form R

So now we can add, subtract, multiply, and we can divide by non-zero numbers.
Isn’t this good enough? Well for lots of purposes yet, since this means Q is a field.
But when you start doing calculus and analysis you run into problems with limits.
Even before then, Euclidean geometry forces you away from Q.

We know by Pythagoras that the diagonal of a unit square has length
√

2. We also
that

√
2 6∈ Q.

From analysis we have that

lim
n→∞

(
1 +

1

n

)n
= e .

All the terms of the sequence an = (1 + 1/n)n are rational numbers. But the limit
e is irrational.

This means that Q is not complete, it has ‘holes’ at all of the irrational points. We
need to fill them to make R. We say that R is the metric completion of Q.

Definition 2.46 (Dedekind cut). A Dedekind cut cut is an ordered pair (A,B) of
subsets of Q, satisfying

i) A and B are non-empty
ii) A and B are complements in Q

iii) a < b for all a ∈ A and all b ∈ B.

Definition 2.47. A cut (A,B) is normalised if B does not contain a minimal

element. If (A,B) is not normalised, then the normalisation is (Â, B̂),where

• Â = A ∪min(B) and B̂ = B \minB.

Definition 2.48. A real number is a normalised cut. The set of all real numbers
is denoted R. (Notice here there is no equivalence, different cuts are different real
numbers.)

Call a real number (A,B) rational if A contains a maximal element. Otherwise
(A,B) is irrational.

Example 2.49. The cut (A,B) = ({ x ∈ Q | x < 0 or x2 < 2 } , { x ∈ Q | x > 0, x2 > 2 })
is not rational. This cut corresponds to

√
2.

Exercise 2.50. Define h : Q→ R by

h(q) = (Aq, Bq) ,

where

Aq := { x ∈ Q | x ≤ q } , Bq := { x ∈ Q | x > q } .

Check that h is an embedding of Q into R. (That is, it is an injective map.) Check
also that h is a bijection Q to rational real numbers.

Definition 2.51. Define 0R = h(0), and 1R = h(1).
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4.1. Arithmetic in R. We want to define + and · on R. But, like in the
previous consructions, they should somehow be compatible with the operations in
Q. The definitions are slightly more delicate this time.

Definition 2.52. Let (A1, B1), (A2, B2) be cuts. Define

(A1, B1) + (A2, B3) := (Â3, B̂3) ,

where
A3 := { x ∈ Q | ∃a1 ∈ A1, a2 ∈ A2 such that x ≤ a1 + a2 } ,

and
B3 = Q− A3 .

Exercise 2.53. Check that (A3, B3) above is a cut. Give an example where (A3, B3)
is not already normalised.

Definition 2.54. Call a cut (A,B) negative if 0 ∈ B, non-negative if 0 ∈ A, and
positive if A contains some q ∈ Q+.

Exercise 2.55. Suppose (A,B) is a cut. Show that (−B,−A) is a cut, where
−A = { −a | a ∈ A }.
Show that (Â, B̂) is positive iff (−̂B, −̂A) is negative.

Definition 2.56. Let x = (A1, B1), y = (A2, B2) be non-negative real numbers.

Define
x · y = (Â3, B̂3) ,

where

A3 := { x ∈ Q | ∃a1 ∈ A1, a2 ∈ A2, a1 ≥ 0, a2 ≥ 0, such that x ≤ a1a2 } .

If x or y is negative, use the identities

x · y = −(x · (−y)) = −((−x) · y) = (−x) · (−y) ,

to convert to the positive case, and apply this definition.

Exercise 2.57. Check that (A3, B3) above is a cut.

Exercise 2.58. How should y−1 be defined in terms of cuts?

Exercise 2.59. Check that g : Q → R is an embedding of fields. That is, check
that R is a field and that g preserves the operations.

Exercise 2.60. Let R+ be the set of all positive real numbers. Define r < s iff
s − r ∈ R+. Check that this is compatible < on Q in the sense that p < q iff
g(p) < g(q).

If x = (A1, B1) and y = (A2, B2) are real numbers, prove that x < y iff A1 ⊂ A2.

4.2. Completeness of R, the least upper bound property. The big payoff
from this construction is that fact that R is now a complete metric space, it has no
holes or gaps.

Theorem 2.61 (Least upper bound property). Every bounded set S ⊂ R has a least
upper bound.

Equivalently every Cauchy sequence { an }n in R converges to some limit L =
limn→∞ an. (Where Cauchy means eventually the terms of the sequence become
arbitrarily close: ∀ε > 0, ∃N ∈ N such that n,m > N implies |an − am| < ε.
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5. Algebraic completion to make C

So now we can add, subtract, multiply, divide by non-zero elements, and take limits,
all the while saying inside R. Do we have enough numbers now? Not if we want
to do algebra. Trying to solve certain polynomial equations forces one to consider
square roots of negative numbers, even to get the real solutions.

Applying the cubic formula to solve x3 − 15x− 4 = 0 leads to the computation of

3

√
2 +
√
−121 +

3

√
2−
√
−121 ,

even to get the real root x = 4. (Bombelli, L’algebra, 1572)

It turns out that 3
√

2±
√
−121 = 2± i, so we can find the real root but we have to

go through the complex numbers.

Definition 2.62. We define C to be the set

C := { (a, b) | a, b ∈ R } ,

with the addition

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) ,

and multiplication

(a1, b1) · (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1) .

In this definition think that i! (0, 1).

Exercise 2.63. Check that C, with these operations, forms a field. What is the
additive identity? The multiplicative identity? What are multiplicative inverses?

Exercise 2.64. Define the map k : R → C by k(r) = (r, 0). Check that this is an
embedding of fields.

Now we can start to write (a, b) ∈ C as a+bi. We can also think of C as the quotient
ring R[i]/(i2 + 1), so that we work with polynomials in some symbol i, and have the
rule i2 = −1.

5.1. Algebraic completeness. Much like with R, there is a big payoff to be
made from constructing C.

Theorem 2.65 (Fundamental Theorem of Algebra). The complex numbers form
an algebraically closed field. That is, every non-zero polynomial f(z) with complex
coefficients has at least one complex root.

Equivalently, every non-constant polynomial f(z) with complex coefficients and de-
gree n has exactly n roots counted with multiplicity.

Finally do we have enough numbers? No, this is just the beginning. There are many
points along the way from

N ⊂ Z ⊂ Q ⊂ R ⊂ C
where we can branch off in a new direction, and construct some new type of number.
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We can branch off between N and Z, and construct the ordinal numbers. Or between
Q and R, we can branch off and construct the p-adic numbers.

Between R and C, instead of adjoining i with i2 = −1 to get the complex numbers,
we can adjoin j with j2 = 1 to get the split complex numbers. Or maybe adjoin ε
with ε2 = 0, and get the dual numbers.

Or we can keep repeating the (Cayley-Dickson) construction which took us from R
to C, and build the Hamiltonian numbers H from C, and the octionion numbers O
from H, and the Sedenion numbers S from O, and so on. . .

Or perhaps we clear all of this away, and build a completely new number system from
scratch, using some of these ideas (Peano axioms, and Dedekind cuts) as inspiration.
We will do this to build the surreal numbers No.



CHAPTER 3

The Surreal numbers No - Introduction

Lecture 3
02/11/2016

The surreal numbers form an incredibly rich number system, despite having such a
simple definition. Constrast the natural numbers and various extensions with the
surreal numbers. The natural numbers are defined using Peano axioms, then built
on top of multiple times via ‘complicated’ definitions to form the integers, rationals,
and finally reals. Whereas the surreal numbers start with two simple axioms, plus
one rule for each of addition and multiplication. And already the surreal numbers
contain and supersede everything up to the reals.

1. Conway’s axioms for the surreal numbers

Before giving the axioms/definitions of a surreal number, you should try to forget
everything you know about numbers. You don’t know what + means, what ≤
means, etc. You don’t know what 0 is, . . . .

Axiom 3.1 (Conway, 1975).

• A surreal number x is a pair {XL | XR }, where XL =
{
xL
}

and XR ={
xR
}

are sets of (previously created) surreal numbers, and no member if
XR is ≤ any member of XL. Any surreal number arises in this way.

In terms of logical symbols this means ∀xL ∈ XL, ∀xR ∈ XR : ¬xR ≤ xL.
Equivalently ¬(∃xL ∈ XL, ∃xR ∈ XR : xR ≤ xL).

We call XL the left set, and XR the right set. If x is a surreal number, then the left
set will be (capital x)L and the right set (capital x)R. The elements of XL are xL,
and the elements of XR are xR.

Of course, the first question is what does x ≤ y mean for surreal numbers? We need
this to make sense of the first axiom.

Axiom 3.1 (ctd).

• Let x = {XL | XR } and y = { YL | YR } be two surreal numbers. We say
x ≤ y (“x is less than or equal to y”) if and only if y ≤ no xL and no
yR ≤ x.
Symbolically x ≤ y iff ∀xL ∈ XL : ¬(y ≤ xL) and ∀yR ∈ YR : ¬(yR ≤ x).
Equivalently x ≤ y iff ¬(∃xL ∈ XL : y ≤ xL) and ¬(∃yR ∈ YR : yR ≤ x).

Notation-Definition 3.2. We say x ≥ y iff y ≤ x. We say x 6≤ y iff ¬(x ≤ y), that
is iff x ≤ y does not hold.

How wonderfully peculiar these axioms are. Two inter-defined and recursively-
defined axioms. To know what a surreal number is we need to nkow what a surreal
number is, and what less than or equal to is. And to know what less than or equal
to is, we need to know what less than or equal to is.

19
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Remark 3.3. Conway’s axioms originally read

• A surreal number is {XL | XR }, where no xL is ≥ any xR.
• We say x ≥ y iff no xR ≤ y and x ≤ no yL.

With the defined equivalence x ≤ y iff y ≥ x, these axioms are equivalent to the
ones we give.

It might also be easier to remember if we write the definition of ≤ as

• x ≤ y iff no xL ≥ y and x ≥ no yR.

Remark 3.4. By dropping the requirement that {XL | XR } has no xR ≤ any xL,
we obtain Conway’s more general notion of a game. Many of the results can be
generalised from surreal numbers to games.

We can also define some more shorthand for relations 6≤, 6≥, <,>,=, also.

Notation-Definition 3.5. We say x 6≤ y iff ¬(x ≤ y), that is iff x ≤ y does not
hold.

We say x = y iff x ≤ y and y ≤ x. We say x < y iff x ≤ y and y 6≤ x. We say y > x
iff x < y.

Warning 3.6. Bear in mind that we have defined what it means for two surreal
numbers to be equal. We therefore distinguish between the ‘value’ of a surreal
number, and the ‘form’ of a surreal number. It might be helpful to have a notion
that two surreal numbers are identical (have exactly the same form, same sets at
every level) by writing x ≡ y, which means every xL ≡ some yL and every xR ≡
some yR.

Notice also how we have defined x ≤ y, y ≤ x, etc. From x 6≤ y we cannot conclude
(at the moment) that y ≤ x. This will be a result we have to prove.

Some motivations for these axioms are in order.

Motivation 3.7. Conway wants x = {XL | XR } to be between all numbers xL (to
the left) and all numbers xR (to the right).

XL XRx

This will be proven later, and will mean that ≤, + (when we define it), etc, have all
the usual properties: ≤ should be transitive, total, etc. If we want x to lie between
all xL and all xR, what should we demand for x ≤ y to behave as we would want?

XRxXL

YRyYL
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The definition of x ≤ y says no xL ≥ y and x ≥ no yR.

Suppose that some xL1 ≥ y. Then we could not allow it to be the case that x ≤ y.
Otherwise we would have x ≤ y ≤ xL1 , meaning x ≤ xL1 by transitivity. So for x ≤ y,
we require no xL ≥ y.

Similarly, if x ≥ some yR1 . Then we cannot allow x ≤ y, for we would have yR1 ≤
x ≤ y, and by transitivity yR1 ≤ y. So for x ≤ y, we require x ≥ no yR.

This is the spirit of Conway’s definitions generally. “What do we know already, by
the answers to simpler questions, about the object being defined.” We can see this
in action when we define addition, negation, multiplication, . . .

2. The first surreal number (Day 0)

We have a wonderful circular definition of surreal numbers in terms of ≤ and other
surreal numbers, which themselves are defined in terms of ≤ and other surreal
numbers. Where can we possibly begin?

Even without knowing any surreal numbers, we can still form sets of surreal numbers.
Namely the empty set ∅. So let us try

z ≡ { ∅ | ∅ }
Notation 3.8. We will avoid writing ∅ unless necessary. If XL = A∪B ∪ { y }, we
will write { A,B, y | · · · } for simplicity.

So we can write z ≡ { | }.
Is z a number? For this we need to check that no member of ZR is ≤ any

member of ZL. Symbolically:

∀zL ∈ ZL ∀zR ∈ ZR : zR 6≤ zL .

Since ZL = ZR = ∅, such a statement is vacuously true. If it were false, then we
would have

∃zL1 ∈ ZL ∃zR1 ∈ ZR : zR1 ≤ zL1 .

In particular ∃zL1 ∈ ZL, and ∃zRl ∈ ZR, so ZL 6= ∅ and ZR 6= ∅.
So z is a number.

Is z ≤ z? For this we need to check that no zL ≥ z, and z ≥ no zR. Symbolically

∀zL ∈ ZL : zL 6≥ z and ∀zR ∈ ZR : z 6≥ zR .

Since ZL = ∅, and ZR = ∅, this is vacuously true. If it were false, then we would
have

∃zL1 ∈ ZL : zL1 ≥ z or ∃zR1 ∈ ZR : z ≥ zR! ,

in particular ∃zL1 ∈ ZL so ZL 6= ∅, or ∃zR1 ∈ ZR so ZR 6= ∅.
So z ≤ z. And by the definition of =, we also obtain z = z.

Remark 3.9. It will turn out that z + x = x and zx = z, for any number x, when
we define multiplication of surreal numbers. So perhaps a good name for z is 0?
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3. The next surreal numbers (Day 1)

Now we have a surreal number z, we can use it in the left or the right set to make
new surreal numbers. What choices do we have for XL? XL = ∅, or XL = { z }.
Similarly XR = ∅, or XR = { z }.
Taking all combinations of choices leads to the following collection of potential new
surreal numbers.

{ | } , { z | } , { | z } , { z | z } .

We already dealt with { | } ≡ z. So let’s look at the other ones.

Is { z | } a number? To check if x = { z | } is a number, we need to check
that no xR ≤ any xL. Symbolically

∀xL ∈ XL ∀xR ∈ XR : xR 6≤ xL .

Since XR = ∅, this holds vacuously. If it were false, then

∃xL ∈ XL ∃xR ∈ XR : xR ≤ xL ,

in particular ∃xR ∈ XR so XR 6= ∅.
Thus { z | } is a number.

Is { | z } a number? To check if x = { | z } is a number, we need to check
that no xR ≤ any xL. Symbolically

∀xL ∈ XL ∀xR ∈ XR : xR 6≤ xL .

Since XL = ∅, this holds vacuously. If it were false, then

∃xL ∈ XL ∃xR ∈ XR : xR ≤ xL ,

in particular ∃xL ∈ XL so XL 6= ∅.
Thus { | z } is a number.

Let us write p ≡ { z | }, and m ≡ { | z }, as names for these numbers.

Obviously, we can generalise both of these result to the following.

Proposition 3.10. If XL = ∅, or XR = ∅. Then

{XL | XR }
is a surreal number.

Proof. We need to check that no xR ≤ any xL. Symbolically

∀xL ∈ XL ∀xR ∈ XR : xR 6≤ xL .

Since one of XL = ∅ or XR = ∅, this is vacuously true.

If it were false, then

∃xL ∈ XL ∃xR ∈ XR : xR ≤ xL ,

in particular ∃xL ∈ XL so XL 6= ∅ and ∃xR ∈ XR so XR 6= ∅. �
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Is { z | z } a number? What about x ≡ { z | z }? Is this a number? We need
to check that no xR ≤ any xL. Symbolically

∀xL ∈ XL ∀xR ∈ XR : xR 6≤ xL .

By taking xR = z ∈ XR and xL = z ∈ XL, we have z ≤ z. So this fails. And
{ z | z } is not a number.

[It is a game, under Conway’s more general definition. As a game, it is often called
∗ ≡ { 0 | 0 }. It corresponds to a game where the first player to move loses (where
loses means the player has no valid moves). We can return to this later.]

What can we prove about p,m and z now?

Is z ≤ p? z ≤ p means that no zL ≥ p, and z ≥ no pR. Symbolically

∀zL ∈ ZL : zL 6≥ p and ∀pR ∈ PR : z 6≥ pR .

Since ZL = PR = ∅, this is true. (If it were false, then

∃zL ∈ ZL : zL ≥ p or ∃pRinPR : z ≥ pR .

In particualr ZL 6= ∅ or PR 6= ∅.)

So z ≤ p.

Is p ≤ z? p ≤ z means that no pL ≥ z, and p ≥ no zL. Formally

∀pL ∈ PL : pL 6≥ z and ∀zL ∈ ZL : p 6≥ zL .

Since ZL = ∅, the second part of the conjunction holds. But what about the first?
Since PL = { z }, we need to check that pL = 0 6≥ 0. But from previous, we know
0 ≥ 0, and the first part of the conjunction fails.

This means p 6≤ z. And by the definition of <, we conclude z < p.

Is m ≤ z? m ≤ z means that no mL ≥ z, and m ≥ no zL. Formally

∀mL ∈ML : mL 6≥ z and ∀zL ∈ ZL : m 6≥ zL .

Since ML = ZL = ∅ this is vacuously true. (If it were false, then

∃mL
1 ∈ML : mL

1 ≥ z or ∃zLinZL : m ≥ zL1 ,

so ML 6= ∅ or ZL 6= ∅.)

Is z ≤ m? z ≤ m means that no zL ≥ m and z ≥ no mL. Formally

∀zLinZL : zl 6≥ m and ∀mL ∈ML : z 6≥ mL .

Since ZL = ∅, the first part of this conjunction is true. But when we check the
second: ML = { z }, so we need to check that z 6≥ mL

1 ≡ z. But from previous, we
know z ≥ z. So the second part of the conjunction fails.

Hence z 6≤ m. By the definition of <, we obtain that m < z.
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Is m ≤ p? Well, if ≤ behaves like we would want it to, then yes, this must
hold because m ≤ 0 ≤ p, so by transitivity we should have m ≤ p. But we haven’t
proven transitivity yet, so we must check this directly.

So m ≤ p means no mL ≥ p and m ≥ no pR. Formally

∀mLinML : mL 6≥ p and ∀pR ∈ PR : m 6≥ pR .

Since ML = ∅ and PR = ∅, this is vacuously true.

We can generalise this as follows.

Proposition 3.11. Let x = { | XR } and y = { YL | } be surreal numbers. Then
x ≤ y. Moreover x ≤ 0 and 0 ≤ y.

Proof. To show x ≤ y, we check that no xL ≥ y, and x ≥ no yR. Formally

∀xL ∈ XL : xL 6≥ y and ∀yR ∈ YR : x 6≥ yR .

Since XL = ∅ and YR = ∅ both parts of the disjunction are true. Hence x ≤ y.

Moreover, taking YL = ∅ gives x ≤ { | } ≡ 0. Alternatively, taking XR = ∅ gives
0 ≡ { | } ≤ y. �

Is p ≤ m? This is true if no pL ≥ m and p ≥ no mR. But 0 ∈ PL = { z }, and
we have z ≥ m, so the first condition fails. Therefore p 6≤ m.

Since m ≤ p and p 6≤ m, we conclude p < m.

Is m ≤ m? This is true if no mL ≥ m, and m ≥ no mR. Since ML = ∅, the
first condition holds vacuously. (If the first condition fails, then there is some mL

1

with m ≤ mL
1 , in particular

{
mL

1

}
⊂ ML 6= ∅.) Since MR = { z }, and m 6≥ z, the

second condition holds. Therefore m ≤ m. We also get m = m too.

Is p ≤ p? This is true if no pL ≥ p and p ≥ no pL. Since PR = ∅ the second
condition is true vacuously. (If it were false, then there is some pL1 with p ≥ pL1 , in
particular

{
pL1
}
⊂ pL 6= ∅.) Since PL = { z }, and z 6≥ p, the first condition holds.

Therefore p ≤ p. We also have p = p too.

This means we have now three numbers

m < z < p .

And we have proven the various equailities and inequailities. It will turn out later
that px = x for any number x, when we have defined multiplication. So perhaps we
should name p as 1. It also turns out to be the case that m = −p, so let’s call m as
−1. With the name 0 for z, we therefore get the following.

−1 < 0 < 1 .

4. Numbers created on Day 2

We can now use any of the following 8 sets as the left and right sets. How many
combinations give valid numbers?

∅, { 0 } , { 1 } , { −1 }
{ 0, 1 } , { −1, 0 } , { −1, 1 } , { −1, 0, 1 }
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With a bit of work, one can find the following 20 valid surreal numbers formed from
the above sets.

{ | } , { 0 | } , { −1 | } , { 1 | } , { −1, 0 | } ,
{ 0, 1 | } , { −1, 1 | } , { −1, 0, 1 | } , { −1 | 0 } , { | 0 } ,
{ | −1 } , { | 1 } , { −1 | 1 } , { 0 | 1 } , { −1, 0 | 1 }

{ | 0,−1 } , { | 0, 1 } , { −1 | 0, 1 } , { | −1, 1 } , { | −1, 0, 1 } .

Exercise 3.12. Check this! Make sure we haven’t missed any.

Lecture 4
09/11/2016

Some of these numbers we have already encountered. We’ve got 0 ≡ { | }, 1 ≡
{ 0 | } and −1 ≡ { | 0 } on the list again. So there are still potentially 17 new
numbers to deal with.

We can check directly how any pair of these numbers (new or old) compares. It’s
going to be tedious to check every pair, but in principle we could do it. For example

Result { 1 | } > 1: We check { 1 | } ≥ 1, and { 1 | } 6≤ 1.

For the first: 1 ≤ { 1 | } means no 1L ≥ { 1 | } and 1 ≥ no { 1 | }R. Since

{ 1 | }R = ∅, the second part holds vacuously. For the first we need to check that
0 6≥ { 1 | }.

Subresult 0 6≥ { 1 | }: We have { 1 | } ≤ 0 means no { 1 | }L ≥ 0 and { 1 | } ≥ no

0R. The first condition fails because 1 ∈ { 1 | }L = { 1 } has 1 ≥ 0. So { 1 | } 6≤ 0,
or equivalently 0 6≥ { 1 | }.
Since the condition 0 6≥ { 1 | } holds, we see the first condition no 1L ≥ { 1 | }
holds. Since both conditions holds, we get that { 1 | } ≥ 1.

So we check that { 1 | } 6≤ 1. Now { 1 | } ≤ 1 means no { 1 | }L ≥ 1 and { 1 | } ≥
no 1R. For the first 1 ∈ { 1 | }L = { 1 } has 1 ≥ 1, so the first condition fails. Thus
{ 1 | } 6≤ 1.

Summary: { 1 | } > 1.

Notice how the recursive nature of ≤ made its way into the proof.

Result 0 < { 0 | 1 } and { 0 | 1 } < 1. . For the first part, we check 0 ≤
{ 0 | 1 } and 0 6≥ { 0 | 1 }.

Now 0 ≤ { 0 | 1 } means no 0L ≥ { 0 | 1 } (vacuously true), and 0 ≥ no { 0 | 1 }R =
{ 1 } (holds because 0 6≥ 1).

Now { 0 | 1 } ≤ 0 means no { 0 | 1 }L ≥ 0 (fails because 0 ∈ { 0 | 1 }L = { 0 } has
0 ≥ 0) and . . . . So { 0 | 1 } 6≤ 0.

Summary 0 < { 0 | 1 }.

Exercise 3.13. Complete the proof to show { 0 | 1 } < 1.

More interesting is the following
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Result { −1 | 1 } = 0: We check { −1 | 1 } ≤ 0: this means no { −1 | 1 }L ≥ 0
(indeed −1 6≥ 0), and { −1 | 1 } ≥ no 0R (indeed 0R = ∅).
Also we check 0 ≤ { −1 | 1 }: this means no 0L ≥ { −1 | 1 } (indeed 0L = ∅), and

0 ≥ no { −1 | 1 }R (indeed 0 6≥ 1).

So on the second day, we have a ‘new’ number which equals one of our old numbers,
even though it has a different form. Notice { −1 | 1 } 6≡ 0, because they are formed
by different sets. But these two representations have the same value 0.

I’m going to give names to some of these numbers now, even though we will only
establish later the properties (say, of addition +), which will fully justify the names.

Let’s define

2 ≡ { 1 | }
1

2
≡ { 0 | 1 }

− 1

2
≡ { −1 | 0 }

− 2 ≡ { | −1 } .

I claim that the following equalities hold

2 = { 1 | } = { 0, 1 | } = { −1, 1 | } = { −1, 0, 1 | }
1 = { 0 | } = { −1, 0 | }
1

2
= { 0 | 1 } = { −1, 0 | 1 }

0 = { | } = { −1 | } = { | 1 } = { −1 | 1 }

−1

2
= { −1 | 0 } = { −1 | 0, 1 }

−1 = { | 0 } = { | 0, 1 }
−2 = { | −1 } = { | −1, 0 } = { | −1, 0 } = { | −1, 0, 1 } .

I also claim that the following inequalities hold for any representative of these num-
bers

−2 < −1 < −1

2
< 0 <

1

2
< 1 < 2 ,

including any which should follow by transitivity. And that if x < y holds then
x 6≥ y, etc. All of these results can be checked explicitly using the definitions.

Exercise 3.14. Check some of these directly. Check, say, { −1 | 0 } < { −1 | 1 }.
You may not use that { −1 | 1 } = 0 to say −1 6≥ { −1 | 1 } since we have not yet
proved that x = y and y 6≥ z implies x 6≥ z!

None of the proofs are any more difficult (other than keeping track of the nesting).
Any of these proofs will necessarily terminate a condition that holds vacuously
because all of the steps are simpler. Recall

x ≤ y ⇐⇒ no xL ≥ y and x ≥ no yR .

In the first part, x is replaced with xL which is constructed earlier. Similarly in the
second part, y is replaced with yR, which is constructed earlier.
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Let’s also consider some of the patterns in these equalities. The ‘interpretation’ is
that {XL | XR } should be between all values in XL and all values in XR. Consider
x = { −1 | 0 }, this should have x > −1 and x < 0. Consider also y = { −1 | 0, 1 }
this should have y > −1, and y < 0 and y < 1. But the condition y < 0 should
imply that y < 1 anyway, so the extra 1 is irrelevant. And indeed it is, since we
have { −1 | 0 } = { −1 | 0, 1 }.
We would like be able to prove a result like the following:

Conjecture 3.15. If x = {XL | XR }, and y 6≤ x. Then x = {XL | XR, y }.
If x = {XL | XR }, and y 6≥ x. Then x = {XL, y | XR }.

We can do this, but we have to prove some general results about surreal numbers
first. So we must first talk about how to prove results for all surreal numbers.

5. Proof by induction for surreal numbers

Recall the first of Conway’s axioms defining surreal numbers:

• A surreal number x is a pair {XL | XR }, where XL =
{
xL
}

and XR ={
xR
}

are sets of (previously created) surreal numbers, and no member if
XR is ≤ any member of XL. Any surreal number arises in this way.

The final part of this is what we want to focus on. We can formalise this notion by
way of a type of ‘descending chain condition’. Knuth’s characters refer to this as
‘no infinite ancestral chains’.

Axiom 3.16 (Descending chain condition). There is no infinite sequences of num-
bers xi = {X i

L | X i
R } with xi+1 ∈ X i

L ∪X i
R for all i ∈ N.

[Compare this with the axiom of regularity in ZF set theory, which reads

∀x(x 6= ∅ =⇒ ∃y ∈ x : y ∩ x = ∅) .

That is, every non-empty A contains an element which is disjoint from A.

This means that no set is a member of itself. For if x = { x }, then the element
x ∈ x = A is not disjoint from x = A.

It also means that there are no downward infinite chains an, such that

ai+1 ∈ ai for all i.

]

From this we can establish Conway induction for surreal numbers.

Theorem 3.17 (Conway induction). Let P be a property which surreal numbers can
have, and suppose that {XL | XR } has the property P whenever all elements of XL

and XR have the property. Then all surreal numbers has this property.
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Proof. Suppose x0 is a surreal number which does not satisfy property P . If all
of the elements of XL and XR satisfy P , then so does X. So there is some number
x1 ∈ XL ∪XR which does not satisfy P .

Now suppose xn does not satisfy P . As before we can find xn+1 ∈ Xn
L ∪Xn

R which
does not satisfy P .

By induction we can find xn which does not satisfy P for all n ∈ N, with xn+1 ∈
Xn
L ∪Xn

R.

Thus there is an infinite chain of surreal numbers, contrary to the descending chain
condition. Therefore there is no surreal number which does not satisfy P . �

Alternatively, you might want to take Conway induction as an axiom of the con-
struction of real numbers. Then we can prove the descending chain condition
using the property P (x) “there is no chain of numbers x0, x1, x2, . . ., with every
xi+1 ∈ X i

L ∪X i
R”.

We may therefore use Conway induction to prove a certain statement hold for all
surreal numbers.

6. Properties of ≤

Firstly, it will be necessary to use the concept of a game in some of the later proofs.
We also might want to compare/contrast between the properties of games, and the
properties of numbers.

Axiom 3.18 (Game). • A game g = {XL | XR } is a pair of sets XL and
XR of (previously created) games.
• All games arise in this way, i.e. Conway Induction works for games too.

Notice, every surreal number is a game, since we don’t even need to check the
condition no xL ≥ any xR. We can start off the construction of games with 0 = { | },
also. But the thing { 0 | 0 } that we threw away on day 1, is a valid game now.

These are games in the following sense. The game g = {XL | XR } is between two
players, left and right. The elements of XL indicate which positions left can move
to from the current position, and the elements of XR indicate which positions right
can move to from the current position. A game ends when the player to move has
no valid moves. E.g. if g = { | XR }, and left is about to move, then the game ends,
and he loses (by convention).

(E.g. tic-tac-toe, with some tweaks to avoid draws. . . )

Then we have

• G > 0 if there is a winning strategy for left
• G < 0 if there is a winning strategy for right
• G = 0 if there is a winning strategy for player 2
• G ‖ 0 if there is a winning strategy for player 1

E.g. respectively 1 = { 0 | }, −1 = { | 0 }, 0 = { | }, and ∗ = { 0 | 0 }.
Let’s use this idea of induction to prove some results about ≤ on surreal numbers.
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Earlier on we claimed the interpretation that x = {XL | XR } lies between all ele-
ments of XL, and all elements of XR. This can indeed be seen in various examples
above, though perhaps rather trivially in some cases. We will work towards this

Firstly, we have

Theorem 3.19. For all surreal numbers x, the following holds:

x ≤ x. As a consequence we have x = x.

Proof. This will be proven by (Conway) induction. We start with the base case,
and indeed 0 ≤ 0.

Take as surreal number x = {XL | XR }. Assume this theorem holds for all of x’s
parents. We want to show now that x ≤ x.

By definition, this means we need to check that no xL ≥ x, and x ≥ no xR.

Applying the definition of ≤ to x ≤ xL (some fixed xL) means we need to check
that no (xL)′ ≥ xL and x ≥ no (xL)R. But the first condition fails by taking
(xL)′ = xL ∈ XL. (Induction assumption, the theorem is true for all previous cases,
including xL.) Therefore x 6≤ xL, and hence xL 6≥ x.

Similarly, we check xR ≤ x (some fixed xR). But by definition, this means no
(xR)L ≥ x, and xR ≥ no (xR)′. But the second condition fails by taking (xR)′ =
xR ∈ XR. (Induction assumption.) Hence xR 6≤ x, or equivalently x 6≥ xR.

So we have checked by definition that x ≤ x. The theorem is proven by induction.
And x = x follows immediately by the definition of =. �

Notice here that we did not use that x is a (well-formed) surreal number. So this
result is true for games too.

Lecture 5
16/11/2016

We can also show that ≥ is transitive

Theorem 3.20. If x ≤ y, and y ≤ z, then x ≤ z.

Proof. Suppose this is true for any parents of x, y, z. To prove the claim by
induction we check the definition of x ≤ z.

We need to check no xL ≥ z, and x ≥ no zL.

If we have some xL ≥ z, then from y ≤ z, we obtain y ≤ xL using the induction
assumption. But x ≤ y means no xL ≥ y. Hence no xL ≥ z.

If we have x ≥ some zL, then we obtain from x ≤ y, that zL ≤ y using the induction
assumption. But y ≤ z means y ≥ no zL. Hence x ≥ no zL.

So by definition of ≤, we get x ≤ z.

(Do we need to check a base case? What is the base case? We drop one option at a
time, so we will eventually get back to a case where ZL = ∅ and XL = ∅. Then the
condition x ≥ no zL holds vacuously, as does the condition no xL ≥ z.

The base case of induction is x = { | XR } and z = { ZL | }. In this case we trivially
have x ≤ z, so in particular we have x ≤ y and y ≤ z implies x ≤ z.) �

We can now use this to show that surreal numbers are totally ordered, and that
x = {XL | XR } lies between all the left and right elements.
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Theorem 3.21. For any number x, we have xL < x < xR. Moreover, for any wo
surreal numbers x, y, we must have x ≤ y or y ≤ x.

Proof. As part of the proof that x ≤ x, we established that xL 6≥ x, and x 6≥ xR.
So we only need to establish now that xL ≤ x and x ≤ xR.

But xL ≤ x means no (xL)L ≥ x and xL ≥ no xR. The second condition is part of
the definition of a number, so holds. Also we cannot have (xL)L ≥ x, otherwise by
the induction assumption we get (xL)L < xL, so that x ≤ xL, a contradiction with
our earlier result. So xL ≤ x.

Similarly x ≤ xR means no xL ≥ xR, and x ≥ no (xR)R. The first is the definition
of a number. We cannot have x ≥ (xR)R, otherwise by the induction assumption
we get xR < (xR)R, so that xR ≤ x, contradicting an earlier result. So x ≤ xR.

Now if it is not the case that x ≤ y, then we have x 6≤ y. So one of the conditions
no xL ≥ y, or x ≥ no yR fails.

If the former, then some xL ≥ y, and so x > xL ≥ y meaning x ≥ y. If the latter,
then x ≥ some yR, nd so x ≥ yR > y meaning x ≥ y.

(The base case is, of course, when xL = XR = ∅, and we have vacuously that
xL < 0 < xR, because there are no elements in XL or XR which make this false. �

So surreal numbers are totally ordered. Notice here that we did use the well-formed-
ness of a surreal number in the proof. This suggests that this theorem could fail for
games. Indeed it does.

We do, now, have the consequence that

x 6≤ y =⇒ y < x .

This is because x 6≤ y implies y ≤ x, which taken together with y 6≥ x gives by
definition y < x.

Exercise 3.22. Check (using the definitions exactly as for numbers) that 0 6≤
{ 0 | 0 }, and { 0 | 0 } 6≤ 0. So games 0 and { 0 | 0 } cannot be compared. { 0 | 0 } is
said to be ‘fuzzy’ against 0.

Now we can go back and prove our earlier ‘conjecture’.

Theorem 3.23. If x = {XL | XR }, and y 6≥ x, then a ≡ { y,XL | XR } is equal to
x. If y 6≤ x, then b ≡ {XL | XR, y } is equal to x.

Proof. We check that a ≤ x. This requires no aL ≥ x, and a ≥ no xR.

Every aL is either y, or an xL. We have y 6≥ x by assumption. We have xL < x,
meaning xL 6≥ x. Since a is a number (check!), we know that a < aR = xR, so a 6≥
any xR. So indeed a ≤ x.

We check also that x ≤ a. This requires no xL ≥ a, and x ≥ no aR.

Every aR is an xR, and since x < xR, we indeed have x 6≥ xR = aR. Similarly,
aL < a, and since every xL is an aL, we have xL < a meaning xL 6≥ a.

So a = x �
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Exercise 3.24. Complete the proof for the y 6≤ x, and b ≡ {XL | y,XR } has b = x
case.

Exercise 3.25. Use this theorem to justify the equalities given between the day 2
numbers. Convince yourself that only the largest element of XL and the smallest
element of XR matter. Use the previous theorem to justify the inequalities between
the day 2 numbers.

How many numbers are there on day 3?

We’ll see shortly, that we can write n + 1 = { n | }, rather like the construction of
the natural numbers in set theory.

With this theorem we can now consider some more fanciful numbers.

{ 0, 1, 2, 3, . . . | }
must be > n for any n. Therefore this is infinite in size. Let’s call it ω.

Then what about
{ 0, 1, 2, 3, . . . | ω } .

This must be > n for any n. But also < ω. Therefore this is an infinitely large
number, which is less than infinity. It turns out that this really have value ω − 1,
in the sense that (ω − 1) + 1 = ω. We will need to define addition to justify this
though. . .

Also we have (whatever the fractions means. . . )

ε =

{
0

∣∣∣∣ 1,
1

2
,
1

3
, . . .

}
.

This must be > 0, and < any 1
n
. It must be infinitesimal. It turns out that ε = 1

ω
.

Let’s start to justify these names, by introducing the arithmetic of surreal numbers.





CHAPTER 4

Arithmetic of surreal numbers

We’ve spent a lot of time talking about surreal numbers, and the order properties
of ≤. We assigned temporary names to various numbers, with the promise that we
would justify the names later.

1. Negation

Firstly, we give the definition of negation of surreal numbers

Definition 4.1. Let x ≡ {XL | XR } be a surreal number. Then

−x ≡ { −XR | −XL } ,

where −A = { −a | a ∈ A }.
XRxXL

−XR −x −XL

If ≤ behaves, then we should have xL ≤ x giving −x ≤ −xL, so the right set of −x
consists of all −xL’s.

Example 4.2. Check that −2,−1,−1
2

match with this definition.

We need to check that −x is a number.

Proposition 4.3. Let x = {XL | XR } be a number. Then −x is a number.

Proof. This is by Conway induction. (Base case says that −0 = { | } is a number.
True vacuously.)

We know that −xL and −xR are numbers. We want to check that −xL 6≥ −xR.

We will inductively prove that a ≤ b iff −b ≤ −a.

a ≤ b means no aL ≥ b and a ≥ no bR. And −b ≤ −a means no (−b)L ≥ −a and
−b ≥ no (−a)R.

We have now what

−b ≥ (−a)R ⇐⇒
(−A)R=−(AL)

−b ≥ −aL ⇐⇒
induction

aL ≥ b ,

33



34 4. ARITHMETIC OF SURREAL NUMBERS

similarly
(−b)L ≥ −a =⇒︸ ︷︷ ︸

(−b)L=BR

−bR ≥ −a ⇐⇒︸ ︷︷ ︸
induction

a ≥ bR .

So returning to the original equation, we have that xR 6≥ xL, since x is a number.
We conclude that −xL 6≥ −xR. Therefore −x is a number. �

From this, we get results like x ≥ 0 implies −x ≤ 0.Lecture 6
23/11/2016 We can also prove that −(−x) ≡ x.

Proposition 4.4. For any number x, we have −(−x) ≡ x.

Proof. This is an example of what Conway calls a 1-line proof. It works using
induction, and just manipulates the definition.

−(−x) ≡
{
−(−x)R

∣∣ −(−x)L
}
≡
{
−(−xL)

∣∣ −(−xR)
}

=
{
xL
∣∣ xR

}
≡ x .

Inside this one line, we have used the induction assumption that −(−x) holds for
all parents of x. �

Now let us move on to addition.

2. Addition

We define addition on surreal numbers as follows

Definition 4.5. Let x = {XL | XR } and y = { YL | YR } be surreal numbers. Then

x+ y ≡
{
xL + y, x+ yL

∣∣ xR + y, x+ yR
}

.

This definition is motivated by considering xL < x < xR, so we should have xL+y <
x + y < xR + y. Similarly yL < y < yR, so x + yL < x + y < x + yR. So we know
what should go in the left and right sets.

Exercise 4.6. We also have that xL + yL < x + y < xR + yR. But this is weaker
than the two inequalities above, so the following operation is probably not the same
as x+ y. Investigate this operation

x⊕ y =
{
xL ⊕ yL

∣∣ xR ⊕ yR
}

.

We should check that x+ y is a number. But to do this, we need to establish some
further properties. For the moment, we take x+ y to be a definition of + on games.

We show later than if x and y are both numbers, then so is x+ y.

We can now start checking whether some of the names we assigned earlier are jus-
tified.

We compute

1 + 1 =



 1L + 1, 1 + 1L

∣∣∣∣∣∣
1R + 1, 1 + 1R︸ ︷︷ ︸

1R=∅



 = { 0 + 1, 1 + 0 | }

We need to compute 0 + 1 and 1 + 0 now, but you can check directly that both are
1. SO

1 + 1 = { 1, 1 | } = { 1 | } ≡ 2 .
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Theorem 4.7. For any number x, we have

x+ 0 ≡ 0 + x ≡ x .

Proof. This is another 1-line proof. We have

x+ 0 ≡
{
xL + 0, x+ 0L

∣∣ xR + 0, x+ 0R
}
≡
{
xL + 0

∣∣ xR + 0
}
≡
{
xL
∣∣ xR

}
≡ x .

Same for 0 + x. �

So indeed 0 is the additive identity, 0 was a good name for the number { | }. We
also see that 2 was a good name for { 1 | }.
Similarly, { 2 | } = 3, { 3 | } = 4, . . ..

It is more difficult to check that

1

2
+

1

2
= 1 ,

because we need more sub-results on surreal numbers. Computing the sum should
lead to

1

2
+

1

2
=

{
1

2

L

+
1

2
,
1

2
+

1

2

L

,
1

2

R

+
1

2
,
1

2
+

1

2

R
}

=

{
1

2

∣∣∣∣ 1
1

2

}
,

where 11
2
≡ { 1 | 2 } = 1 + 1

2
.

So we know this is between 1
2

and 11
2
, but what number is it? Directly, you can

check this is = 1, and it is easier using some of the results we proved above. But it
would be nice to have some high-powered theorem which decides automatically it
for us.

Example 4.8. We have 1
2

+ 1
2

= 1.

We check x ≡
{

1
2

∣∣ 11
2

}
≤ 1. This means no xL ≥ 1, and x ≥ no 1R. First true

since 1
2
< 1, i.e. 6≥. Second is true since 1R = ∅.

We check 1 ≤ x ≡
{

1
2

∣∣ 11
2

}
. This means no 1L ≥ x, and 1 ≥ no xR. The second

is true since 1 ≥ { 1 | 2 } implies 1 ≥ { 1 | 2 } > 1, which is false. The first is true
since 0 ≥ x implies 0 ≥ x > 1

2
> 0, so 0 > 0, which is false.

We can also check

(ω − 1) + 1 = { 1, 2, 3, . . . , ω − 1 | ω + 1 } .

We have ω = { 1, 2, 3, . . . | }. Since ω − 1 6≥ ω, we can insert this into the left set
without changing the value. Since ω+ 1 6≤ ω, we can add it to the right set without
changing the value. Hence

(ω − 1) + 1 = ω .

Let’s prove some more properties about +

Theorem 4.9. Addition of surreal numbers is commutative, and associative.
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Proof. These have one line proofs

x+y ≡
{
xL + y, x+ yL

∣∣ xR + y, x+ yR
}
≡
{
y + xL, yL + x

∣∣ y + xR, yR + x
}
≡ y+x .

(x+ y) + z ≡
{

(x+ y)L + z, (x+ y) + zL
∣∣ · · ·

}

≡
{

(xL + y) + z, (x+ yL) + z, (x+ y) + zL
∣∣ · · ·

}

≡
{
xL + (y + z), x+ (y + z)L

∣∣ · · ·
}

≡
{
xL + (y + z), x+ (yL + z), x+ (y + zL)

∣∣ · · ·
}
≡ x+ (y + z) .

�

Fill in the missing details about the right hand set.

Slightly more interesting is the following that −x+ x = 0.

Theorem 4.10. For any number x, −x+ x = 0.

Proof. Suppose that 0 6≤ (−x + x), then there is some 0 ≥ (−x + x)R or 0L ≥
(−x+ x) (no.).

But 0 ≥ (−x+x)R means 0 ≥ (−x)R+xor 0 ≥ −x+xR, which means 0 ≥ −xL+x.

But by induction we have xR + (−xR) ≥ 0, and xL + (−xL) ≥ 0. So we see that
−x+ xR ≤ 0 is false: we would have to check (−x+ xR)L 6≥ 0, but one (−x+ xR)L

is (−x)L + xR = −(xR) + xR ≥ 0. Similarly −xL + x ≤ 0 is false: we would have to
check (−xL + x)L 6≥ 0, but one (−xL + x)L is −xL + xL ≥.

Therefore, we do have −x+ x ≥ 0. Similarly −x+ x ≤ 0. So they are equal. �

Notice here that we only have x + (−x) = 0, and not ≡ 0. E.g. working out
1 + (−1) = { 0 | }+ { | 0 } = { 0 + (−1) | 1 + 0 } = { −1 | 1 }, and this is = 0, but
not ≡ 0.

Remark 4.11. We see that under +, surreal numbers form an abelian semigroup
when we even demand ≡. Moreover, under =, they form an abelian group. (We
actualy should call this a GROUP, not a group since the surreal numbers are so
large they form a CLASS not a set.)

We can also check the following

Exercise 4.12. For all numbers x, y, we have

−(x+ y) ≡ −x+−y .

Lecture 7
30/11/2016

2.1. Addition, and order. We now establish some properties about +, with
respect to ≤. This will allow us to show that x+ y is a binary operation on surreal
numbers, i.e. the sum of two numbers is still a number.

Theorem 4.13. For any (games) x, y, z, we have y ≤ z iff y + x ≤ z + x.
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Proof. We show y + x ≤ z + x =⇒ y ≤ z, and y + x 6≤ z + x =⇒ y 6≤ z.

Result 1: If y+x ≤ z+x, we have that no (y+x)l ≥ z+x, and y+x ≥ no (z+x)R.
This means no y + xL ≥ z + x, no yL + x ≥ z + x, y + x ≥ no z + xR, and y + x ≥
no zR + x. The important ones here are the second, and fourth. By the induction
hypothesis, these imply no yL ≥ z, and y ≥ no zR. This by definition means y ≤ z.

Result 2: Suppose y + x 6≤ z + x, and y ≤ z. From the first, we have that some

y + xL ≥ z + x, yL + x ≥ z + x, y + x ≥ zR + x, or y + x ≥ z + xR .

By the induction hypothesis and transitivity (which holds for games), using y ≤ z,
we get some

z + xL ≥ z + x, yL + x ≥ y + x, z + x ≥ zR + x, or z + x ≥ z + xR .

And using the induction hypothesis again, we get

xL ≥ x, yL ≥ y, z ≥ zR, or x ≥ xR ,

all of which are false. �

Remark 4.14. From this, we see that y = z implies y+x = z+x, so that addition
of surreal numbers (games at the moment) is well defined, when using = instead of
≡.

Theorem 4.15. If x and y are surreal numbers, then so if x+ y.

Proof. Since x is a number, we have xL < x < xR, and so we deduce xL + y <
x+ y < xR + y. Similarly yL < y < yR, so x+ yL < x+ y < x+ yR.

By induction, we have that xL + y, x+ yL, xR + y, x+ yR are all numbers, and that
xL + y, x+ yL < x+ y < x+ yR, xR + y. This means, no elements of (x+ y)L are ≥
any elements of (x+ y)R.

Thus we deduce that x+ y is also a surreal number. �

2.2. The numbers on day n. In problem sheet 3, you are guided through a
proof by induction that there are 2n numbers on day n. If the numbers on day n
are

x1 < x2 < · · · < xm ,

then on day n+ 1, we obtain exactly

{ | x1 } < x1 < { x1 | x2 } < x2 < · · · < { xm−1 | xm } < xm < { xm | } .

That is we create new numbers at the ends, and in between the existing numbers.
All that is left now is to settle the values of these numbers.

In the final part of the problem sheet, you will establish the following.

Theorem 4.16. If xm is the largest number on day n, then the largest number
created on day n+ 1 is { xm | } = xm + 1.

Theorem 4.17. If a, b are surreal numbers, and there is no a < w < b, such that
w is older (created earlier) than a, or is older than b. Then

{ a | b }+ { a | b } = a+ b .

Proof. Exercise. �
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That is to say,

{ a | b } =
1

2
(a+ b) .

We can now give the structure of surreal numbers on day n completely. After day
n, we get the integers −n, . . . , n. And any dyadic rationals half way between all the
numbers on the previous day.

Any dyadic rationals n
2m

is created on some finite day. You can find it via a binary
search algorithm: is it bigger, or smaller than the current number? Then restrict
to the appropriate sub interval. (This leads to the notion of the more general sign
expansion of a surreal number, later).

2.3. The remaining numbers. But what about the irrational numbers? Or
even the fractions like 1

3
? When are they created? I’ve already indicated that we can

discuss numbers where the left and right sets are infinite, to get ω = { 0, 1, 2, . . . , | }.
So we can try approximating it by dyadic rationals

1

4
+

1

16
+ · · ·+ (

1

4
)n <

1

3
<

1

2
− 1

8
− · · · − 1

2
(
1

4
)n .

Therefore, we might try

x = { 1/4, 5/16, 21/64, . . . | 1/2, 3/8, 11/32, 43/128, . . . } .

It can then be checked that x + x + x = 3x = 1, so we have found 1
3
. (Rather

than something infinitesimally close.) For the proof, it is best to use the simplicity
theorem (a version of which you should prove on the problem sheet)

Theorem 4.18 (Simplicity). Suppose for x = {XL | XR } that some number z
satisfies xL 6≥ z and z 6≥ xR, for all xL and xR. But that no parent of z satisfies
this. Then x = z.

Proof. Exercise. �

[ This says that x = {XL | XR } is the simplest (i.e. earliest created) number lying
between all XL and all XR. If z is the earliest such number, then it satisfies these
properties. Its parents zL and zR cannot satisfy them, because they are created
earlier. But the version above also holds for games x. ]

Then we compute that

x+ x =
{
x+ xL

∣∣ x+ xR
}

x+ x+ x =
{
x+ xL + (xL)′, x+ x+ xL

∣∣ x+ xR + (xR)′, x+ x+ xR
}

The numbers in the left hand set are < 1. Why? We know that x < anything > 1/3,
and that xL < 1/3. If x+ xL + (xL)′ ≥ 1, then x+ 1/3 + 1/3 > x+ xL + (xL)′ ≥ 1,
so x > 1/3. Impossible. Similarly for the case. And the numbers in the right are
> 1, since x > anything < 1/3.

So now,
y = x+ x+ x = { YL | YR } ,

where all yL < 1, and all yR > 1. We claim that by the simplicity theorem y = 1.
Indeed, z = 1 satisfies these conditions yL 6≥ 1 and 1 6≥ yR. But the parent zL = 0
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does not satisfy this, since the left set contains yL = x+1/4+1/4 > 1/4+1/4+1/4 =
3/4, say. So y = z = 1.

You can find any other real number in a similar way.

2.4. Tree of surreal numbers. We can also draw a tree describing the surreal
numbers on each day. Each node of the tree connects to two children: the first
numbers created just to the left, and just to the right of the current number.

*** Insert picture of surreal number tree, see https://en.wikipedia.org/wiki/

Surreal_number#/media/File:Surreal_number_tree.svg ***

3. Multiplication

Definition 4.19 (Multiplication). Let x = {XL | XR } and y = { YL | YR } be
numbers (or games). We define

xy ≡{xLy + xyL − xLyL, xRy + xyR − xRyR|
xLy + xyR − xLyR, xRy + xyL − xRyL} .

This definition very much does need motivation.

We ‘know’ that if x > xL, and y > 0, then xy > xLy. But as a result, this is strictly
weaker than the elements in the left set above. We instead use that

(x− xL)(y − yL) > 0 ,

giving
xy > xyL + xLy − xLyL .

Similarly for other elements of the left and right sets.

Exercise 4.20. For all x, y, z, we have the following identities and equalities

i) x0 ≡ 0,
ii) x1 ≡ x,

iii) xy ≡ yx,
iv) (−x)y ≡ x(−y) ≡ −(xy),
v) (x+ y)z = xz + yz,
vi) (xy)z = x(yz)

Why are the results in v) and vi) only =, and not ≡?

We again justify the name 0 ≡ { | }, since it behaves like 0 under multiplication.
We also justify the name 1 ≡ { 0 | }, since it is the multiplicative identity.

Lecture 8
07/12/2016

But as with addition, we still need to prove that xy is a number. This requires an
understanding of how ≤, multiplication and addition all relate. It ends up dealing
with a rather intricate multiple step induction argument.

Theorem 4.21. • If x and y are numbers, then so is xy,
• If x1, x2, y are numbers, and x1 = x2, then x1y = x2y,
• If x1, x2, y1, y2 are numbers, such that x1 ≤ x2, and y1 ≤ y2, then x1y2 +
x2y1 ≤ x1y1 + x2y2. The conclusion is < if both premises are <.

https://en.wikipedia.org/wiki/Surreal_number#/media/File:Surreal_number_tree.svg
https://en.wikipedia.org/wiki/Surreal_number#/media/File:Surreal_number_tree.svg
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Proof outline. Call the inequality in iii) as P (x1, x2 : y1, y2). Notice that for
x1 ≤ x2 ≤ x3, P (x1, x3 : y1, y2) follows from P (x1, x2 : y1, y2) and P (x2, x3 : y1, y2).

To prove i), we can by induction assume that all parents of xy are numbers because
they all have a form like x∗y + xy∗ − x∗y∗. So we need to establish only that the
result xy satisfies the no (xy)L ≥ any (xy)R condition of surreal numbers.

This entails checking, 4 inequalities such as

xL1y + xyL − xL1yL︸ ︷︷ ︸
first type of (xy)L

< xL2y + xyR − xL2yR︸ ︷︷ ︸
first type of (xy)R

.

For this inequality, there are two cases to deal with xL1 ≤ xL2 , and xL1 ≥ xL2 . In
the first case we can write

xL1y + xyL − xL1yL ≤ xL2y + xyL − xL2yL

< xL2y + xyR − xL2yR

using P (xL1 , xL2 : yL, y) for the first, and P (xL2 , x : yL, yR) for the second.

If xL2 ≤ xL1 we can instead write

xL1y + xyL − xL1y < xL1y + xyR − xL1yR

≤ xL2y + xyR − xL2yR

using P (xL1 , x : yL, yR) and P (xL2 , xL1 : y, yR) respectively.

For ii) we can verify that x1 = x2 iff xL1 < x2 < xR1 and xL2 < x1 < xR2 just using
the definitions of x1 ≤ x2 and x2 ≤ x1. So we need to check various inequalities like
(x1y)L < x2y < (x1y)R.

We’ll check the case (x1y)L = xL1 y + x1y
L − xL1 y

L < x2y. By induction we can
assume x1y

L = x2y
L. We also have xL1 y+x2y

L < xL1 y
L+x2y using P (xL1 , x2 : yL, y).

Together they imply the required result.

For iii). If x1 = x2, or y1 = y2, ii) shows that = holds, as we can assume x1 < x2

and y1 < y2. If x1 < x2, then either x1 < xR1 ≤ x2 or x1 ≤ xL2 < x2.

If x1 < xR1 ≤ x2 holds, then we can deduce P (x1, x2 : y1, y2) from x1, x
R
1 : y1, y2) and

P (xR1 , x2 : y1, y2). The latter is strictly simpler than the original P . Using y1 < y2,
the former can be reduced to one of P (x1, x

R
1 : y1, y

R
1 ) or P (x1, x

R
1 : yL1 , y1).

Overall we reduce to P (xL, x : yL, y), P (xL, x : y, yR), P (x, xR : yL, y), P (x, xR :
y, yR). These claim that xy is between it’s left and right parents, and so they can
be reduced to strictly simpler P using i). �

Once you have proven all of the above exercise, you will have established that

Theorem 4.22. Under +,× surreal numbers form a totally ordered, commutative
RING.

And, for example, we can conclude now that xy = xz implies y = z, if x 6= 0. And
if x, y > 0, then xy > 0. How?

Exercise 4.23. Above, we showed that multiplication is well-defined for surreal
numbers up to =. It turns out that it is not well-defined for games. Find a game
G1 such that { 1 | }G1 6= { 0, 1 | }G1, even though { 0, 1 | } = { 1 | } = 2.
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4. Division

We now want to show that they in fact, form a FIELD. But how to find multiplicative
inverses?

As a first, observation. There can’t really be any formula like the ones for multi-
plication, and for addition. Any such formula to find 1/3 = { 0 | } / { 2 | }, could
only have finitely many elements in the left set, and in the right set. And so, would
be a dyadic fraction. Hmm. . .

Thankfully, Conway has great insight about this question. We ill give a formula for
y−1, when y > 0. Then using properties of multiplication, we get −(−y)−1 as the
multiplicative inverse, when y < 0.

Firstly, we need an auxiliary result

Lemma 4.24. Let x > 0 be a surreal number. Then x has a form in which 0 ∈ XL,
and all other xL are positive.

Proof. Let x = {XL | XR }. Since x > 0, i.e. x 6≤ 0, it must be that some xL ≥ 0.
Therefore, every xR > xL ≥ 0. So putting

y = { 0, XL | XR }
definitely gives us a number. Moreover, since 0 6≥ x, we can insert 0 on the left,
without changing the value, i.e. x = y.

Finally, consider

z =
{

0, X̃L

∣∣∣ XR

}
,

where

X̃L =
{
xL ∈ XL | xL ≥ 0

}
.

Then z is still, definitely, a number, and z > 0. If xL < 0, then xL 6≥ z, so adding
it to the left set does not change the value. We conclude

z = y .

This produces the require form
{

0, X̃L

∣∣∣ XR

}
for x = {XL | XR }. �

For a number x of this form, we are going to write xL to mean the positive left
elements. Conway, then gives the following remarkable definition of a number y,
which we will prove is x−1.

Definition 4.25 (Reciprocal). Let x > 0 be given in the above form x = { 0, XL | XR }.
Then define

y :=

{
0,

1 + (xR − x)yL

xR
,
1 + (xL − x)yR

xL

∣∣∣∣
1 + (xL − x)yL

xL
,
1 + (xR − x)yR

xR

}
.

This definition most definitely requires explanation/motivation. As usual, it is a
recursive definition, requiring us to know what 1/xL, and 1/xR are already. But
also there is a recursion going on with the elements of y itself. What does this
mean?
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Example 4.26. Let’s apply this definition to 3 = { 2 | }. We write it in the form
{ 0, 2 | }. There is no xR, and the only positive xL is 2. So we get that

y =

{
0,

1

2
(1− yR)

∣∣∣∣
1

2
(1− yL)

}
.

We start with the first yL = 0, to get frac12(1− 0) = 1
2

as a yR. Feed this back in

to get, 1
2
(1− 1

2
) = 1

4
as a yL. And then 1

2
(1− 1

4
) = 3

8
as a yR. And so on.

We form

y =

{
0,

1

4
,

5

16
, . . .

∣∣∣∣
1

2
,
3

8
, . . .

}
,

which looks like the expression for 1
3

that we found earlier.

We now establish that y is a number, and that xy = 1, showing that every non-zero
element has a multiplicative inverse.

Theorem 4.27. i) Firstly, we have xyL < 1 < xyR, for all yL, yR. And
therefore y is a number.

ii) We have (xy)L < 1 < (xy)R, for all (xy)L, (xy)R. And therefore, xy = 1.

Proof. For i) The parents of y are given by formulae of the form

y′′ =
1 + (x′ − x)y′

x′
,

where y′ is an earlier parent, and x′ is some non-zero parent of x.

By induction x′ 1
x′

= 1, so we can rewrite

y′′ =
1 + (x′ − x)y′

x′
=

1

x′
+
x′ − x
x′

y′ .

This can be written as

1− xy′′ = 1− x

x′
− x(x′ − x)

x′
y′

=
x′ − x
x′

− x(x′ − x)

x′
y′

= (1− xy′)x
′ − x
x′

.

We see from this that if y′ satisfies the condition, then so does y′′.

For example with y′′ being a new left parent, one case is

1− xy′′ = (1− xyR)︸ ︷︷ ︸
<0

xL − x
xL︸ ︷︷ ︸
<0

≥ 0 ,

so that 1 ≥ xy′′.

By this induction over new parents, starting with yL = 0 which has 0x = 0 < 1, we
see that all parents of y satisfy this condition.

Now since we have xyL < xyR, which conclude yL < yR, for all yL, yR. So there is
no inequality of the form yL ≥ yR. Hence y is a number.

Lecture 9
14/12/2016
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For ii) The parents of xy are of the form x′y + xy′ − x′y′ = (1 + x(y − y′′), for the
above y′′. From this, the condition holds.

For example, one of the left parents is xLy + xyL − xLyL, and we write this as

1 + xL(y − 1 + (xL − x)yL

xL︸ ︷︷ ︸
some yR

)

︸ ︷︷ ︸
<0

< 1 .

Finally, we show that xy = 1. Write z = xy. Firstly, 0 is a left parent of z, by
taking xL = yL = 0. And the above result claims that zL < 1 < zR, for all zL, zR.

We have 1 ≤ z. Otherwise some 1L ≥ z or 1 ≥ some zR. First doesn’t hold since
0 < z, by the previous, and the second doesn’t hold since 1 < zR by the above.

We have z ≤ 1. otherwise some zL ≥ 1 or z ≥ some 1R. Second doesn’t hold since
1R = ∅. First doesn’t hold since zL < 1 by the previous.

(Alternatively, z = 1 satisfies the conditions, but 0 doesn’t, as one (xy)L is 0. So
z = 1 by simplicity.)

Thus z = 1. This shows that y is the multiplicative inverse of x. �

Conclusion: every non-zero surreal number has a multiplicative inverse, given by
the previous definition in the positive case.

Therefore, surreal numbers in +,× form a totally ordered FIELD.

A more precise proof of the construction of y = 1
x

is given in Section 3.4 of https:
//arxiv.org/abs/math/0410026v2

Exercise 4.28 (Challenge). Try to find a similar construction for the square-root
of a non-negative number x. I.e. give a definition for

y =
√
x

in terms of xL, yL, xR, yR, x.

Can you prove your claim?

https://arxiv.org/abs/math/0410026v2
https://arxiv.org/abs/math/0410026v2




CHAPTER 5

Real Numbers, Ordinal Numbers and Surreal Numbers

We now know that surreal numbers form a FIELD. Since 1 + 1 + · · · + 1 > 0, we
know that this is a field of characteristic 0, and therefore contains Q as a subfield.
How do the surreal numbers relate to other systems of numbers we know?

1. Real numbers

We can define a certain subset of surreal numbers, which we will call real numbers.
We can then identify the usual real numbers (constructed via Dedekind cuts) with
these Conway real numbers.

Definition 5.1 (Conway Real). Let x be a surreal number. We call x real if and
only if −n < x < n (for some integer n ∈ Z ⊂ Surreals) and

x =

{
x− 1, x− 1

2
, x− 1

3
, . . . , x− 1

n
, . . .

∣∣∣∣ x+ 1, x+
1

2
, x+

1

3
, . . . , x+

1

n
, . . .

}
.

It is useful here to remember the simplicity theorem

Theorem 5.2 (Simplicity). Suppose for x = {XL | XR } that some number z sat-
isfies xL 6≥ z and z 6≥ xR, for all xL and xR. But that no parent of z satisfies this.
Then x = z. [If z is the simplest number between XL and XR, then x = z.]

For example

• 0 is a Conway real: if

x =

{
−1,−1

2
, . . .

∣∣∣∣ 1,
1

2
, . . .

}
.

Every number in the left set is < 0, ever number in the right set is > 0. So
xL < 0 < xR. Clearly no parent of 0 satisfies the same property (because 0
has no parents). So by the simplicity theorem x = 0.
• However ε =

{
0 | 1, 1

2
, 1

3
, . . .

}
is not real. If

x =

{
ε− 1, ε− 1

2
, . . .

∣∣∣∣ ε+ 1, ε+
1

2
, . . .

}
.

Then every element in the left set is < 0 because ε < 1
n

for any n. But,
every element in the right set is > 0 because ε > 0. So x = 0 as before.

By induction we have the following theorem

Theorem 5.3. Let x be a rational number whose denominator divides 2n. Then

x =

{
x− 1

2n

∣∣∣∣ x+
1

2n

}
.

45
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From this we can see that all dyadic fractions are Conway real numbers.

Using the formulae for addition, multiplication, etc we can show

• If x is Conway real, then so is −x,
• If x, y are Conway real, then so is x+ y,
• If x, y are Conway real, then so is xy.

The following theorem allows us to identiy Conway real numbers with the usual real
numbers constructed viva Dedekind cuts.

Theorem 5.4. i) Each Conway real hs a unique expression of the form { L | R },
where L,R are non-empty sets of rationals, L has no greatest element, R has no
least element, there is at most one rational not in L∪R, and L is downwards closed
(y < y′ ∈ L =⇒ y ∈ L) R is upwards closed.

ii) Every such choice for L,R as above gives a (unique) real number.

We can therefore identify R with these Conway real numbers via

R 7→ Conway real

r 7→ { rationals < r | rationals > r }

Of course, there is still some checking to be done to see that this is an embedding.
But these are technical details.

Conway also gives a discussion of the ‘best’ order in which to construct the numbers
up to R, using some of the surreal number insight. See “The logical theory of real
numbers” pages 25–27 of On Numbers and Games.

2. Ordinals

In the same way, we can construct an analogue of the ordinal numbers inside the
surreals. Recall that ordinal numbers are (in one definition) equivalence classes of
well-ordered sets (totally ordered sets, where every subset has a least element). This
means (essentially) the ordinals are defined by the ordinals which precede them.

We start the ordinals with 0, 1, 2, . . .. Then comes the least infinite ordinal ω = N.
Then ω + 1 = { 0, 1, 2, . . . , ω }. Etc.

Definition 5.5. Let x be a surreal number. Then x is a Conway ordinal number if
it has an expression of the form x = { L | }.

There is a technical result need that for any x, the CLASS of all ordinal numbers
6≥ x is actually a set.

We then have the following theorem identifying Conway ordinal numbers with the
usual ordinal numbers.

Theorem 5.6. i) For each Conway ordinal α, we have α = { ordinals < α | }.
ii) In any non-empty CLASS of Conway ordinals, there is a least element.

iii) For any set S of Conway ordinals, there is an Conway ordinal greater than
every member of S.
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Be careful though that the operations on ordinals which match our surreal addition
and multiplication are NOT addition and multiplication of ordinals. (E.g. ordinal
addition is non-commutative since 1+ω = ω.) The corresponding ordinal operations
are so-called natural sum and natural product.

These operations come from adding/multiplying the Cantor Normal Form of an
ordinal as a polynomial in ω. Recall

Theorem 5.7 (Cantor Normal Form). Every ordinal α can be written uniquely as

ωβ1c1 + . . .+ ωβkck ,

where k is a natural number, c1, · · · , ck are positive integers, and β1 > β2 > · · · >
bk ≥ 0.

We will generalise this to obtain the Conway Normal form of a surreal number next.





CHAPTER 6

The structure of surreal numbers: birthdays, sign
expansions, normal forms

1. Birthdays

We have (rather vaguely) talked about numbers constructed on Day 0, Day 1, etc.
We can formulate this more precisely now by giving the birthday associated to any
surreal number. This birthday turns out to be an ordinal number.

For an ordinal α, define Mα by x =
{
xL
∣∣ xR

}
∈ Mα if all xL, xR are in

⋃
β<αMβ.

Then

• Mα are the numbers born on or before day α (Made),
• Oα =

⋃
β<αMβ are the numbers born before day α (Old),

• Nα = Mα \Oα are the numbers born on day α (New).

Theorem 6.1. Every surreal number x is in a unique set Nα. We call α the birthday
of x.

Proof. Suppose this is true for all xL, xR. Then pick some ordinal β > the birth-
days of all xL, xR. (Such an ordinal exists!). Then x ∈ Mβ, so is created on some
day α ≤ β, i.e. is in some Nα. �

Lecture 10
21/12/2016

For x ∈ Nα, we can consider approximations to x formed by taking only elements
of Oβ, β < α.

xβ = { y ∈ Oβ, y < x | y ∈ Oβ, y > x }
Then xα = x, using the simplicity theorem. (Check this) And xγ = x for all γ ≥ α.

In some sense, xβ is the best approximation to x one can get on day β.

[ Say xβ < x. If z ∈ Mβ, z =
{
zL
∣∣ zR

}
, and z < x, then each zL < x, and is in

Oβ. So already each zL appears in the left set of xβ, meaning zL < xβ. Moreover,
z < x < (xβ)R. So indeed we get z ≤ xβ. Therefore it suffices to only include the
xβ when constructing x

x = { xβ < x | xβ > x } ,

since any other option created on day β provides a weaker bound. ]

For example, the approximations to x = 5/8 are

x0 = { | } = 0

x1 = { 0 | } = 1

x2 = { −1, 0 | 1 } = 1/2

x3 = { −2,−1,−1/2, 0, 1/2 | 1, 2 } = 3/4

x4 = { . . . , 1/2 | 3/4, . . . } = 5/8 = x

49
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For example the approximations to e = exp(1) are

0, 1, 2, 3, 2
1

2
, 2

3

4
, 2

5

7
, . . . .

The approximations for ω − 1 are

0, 1, 2, . . . , ω, ω − 1 .

The approximations for ω/2 are

0, 1, 2, 3, . . . , ω, ω − 1, ω − 2, . . . , ω/2 .

The approximations for ω + 1/2 are

0, 1, 2, . . . , ω, ω − 1, ω + 1/2 .

This previous theorem shows that the approximations xβ ‘converge’ to x, in a precise
way. (They all coincide for some sufficiently large β.) We use this to define the sign
expansion.

2. Sign expansion

Let x be a surreal number with birthday α, with approximations xβ. We define
sβ = sign of x− xβ, with sβ = 0, for β ≥ α. Notice that if x has birthday α, then
x − xα = 0, so the α-th sign is 0. Comparing lengths of sign expansions leads to
the previous notion of created earlier/simpler, x is created earlier than y if x has a
shorter sign expansion than y.

We can lexicographically order these sign sequences, using − < 0 < +. I.e.

(s) < (t) iff the first different place has sα < tα .

This associates a sequence of signs +,− to x, which is +,− below some ordinal α,
and 0 (at or) beyond. We’ll see that this turns out to be a bijective order preserving
correspondence.

5/8 = +−+−
e = + + +−+ +− · · · (of length ω)

ω − 1 = +ω−
ω/2 = +ω−ω

ω + 1/2 = +ω −+ .

[Notice, we count from position 0, so +4 = ++++ vanishes at position 4. Similarly,
+ω is + for all positions < ω, and is 0 at position ω. We can just sum the exponents
of +,− to get the birthday.]

These sign sequences justify the tree of surreal numbers we previously drew, and
shows how it extends to all ordinal depths. + means move to the right branch, and
− means move to the left branch from the current node.

The sign expansion for xβ is obtained by truncating the sign expansion for x to
length β, and filling with 0’s for positions ≥ β. Check this (!)
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Theorem 6.2. Let (s), (t) be sign sequences for x, y. Then (s) < (t), etc if and
only if x < y, etc. So surreal numbers and sign sequences have the same ordering.

Proof. Suppose that (s) < (t) with the first difference at α. That is to say, sβ = tβ
for all β < α, but sα < tα.

Since xβ is obtained by truncating s, and setting sγ = 0, for γ ≥ β, we can say
that xβ = yβ, for β ≤ α by induction. (The position α is determined by the
approximation xα, it is not used in it. So the truncations s(α) = t(α).)

Now sα = sgn(x− xα) < tα = sgn(y − yα). Therefore

x− xα < y − yα =⇒ x < y ,

since xα = yα. Alternatively, we can see this as x < xα = yα < y by the signs sα
and tα respectively.

[Viz:

x = 2
1

2
↔ + + +− = s

y = 4↔ + + ++ = y

With approximations x0 = 0, x1 = 1, x2 = 2, x3 = 3, x4 = 21
2

= x, and y0 = 0, y1 =
1, y2 = 2, y3 = 3, y4 = 4.

The first place they differ is place 3. Truncate to s(3) = t(3) = +++↔ 3 = x3 = y3.
But s3 = − < t3 = +. And we do have

s3 = sgn(x− x3) = sgn(2
1

2
− 3) < t3 = sgn(y − y3) = sgn(4− 3) ,

giving

2
1

2
− 3 < 4− 3 =⇒ 2

1

2
< 4

]

Moreover, given x, y with (s) = (t) of common total length α, we have that

x = { xβ < x | xβ > x }
y = { yβ < y | yβ > y } .

But by induction every xβ = yβ, β < α, since the truncated sign sequences are
equal.

Each parent xβ agrees with some parent yβ. Moreover xβ is in the left set of x iff
x− xβ > 0 iff sβ = tβ = + iff y − yβ > 0, which is if and only if yβ is in the left set
of y. That is to say, these two numbers are the same. �

Also every sign expansion which we can write down does occur

Theorem 6.3. For an arbitrary sequence (s) of signs +,−, 0 after some ordinal α.
Then there is a number with sign expansion x.
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Proof. Write s(β) to mean the sequence truncated at β, filed with 0’s at positions
≥ β.

By induction we can assume that for β < α, such a number xβ with sign expansion
s(β) exists. Now consider

x = { xβ, s(β) < s | xβ, s(β) > s } .

Since each parent of x is born on day ≤ β, we see that x is born, at most, on day
β + 1 ≤ α.

These xβ are the approximations to x. Now the set up of x means that the sign
x − xβ is sβ exactly, for β < α. Since s(β) is a truncation of s, this they agree for
all places in < β. At β we have s(β)β = 0, so sβ < 0 iff s < s(β) iff xβ > x iff
x− xβ < 0. I.e. s(x)β = sβ, so that x has the right signs. �

All of the theory of surreal numbers can be developed from this point of view first.
Harry Gonshor (An introduction to the Theory of Surreal numbers) develops surreal
numbers using the sign expansion as the starting point.

Exercise 6.4. Investigate the sign expansion of integers, dyadic fractions, and more
generally real numbers. Can you manage to read off the number from the signs, or
the signs from the number?

Exercise 6.5. What is the sign expansion of 3
4
ω. How does this relate to the

expansion for 3
4
?

Exercise 6.6. Show that
√
ω =

{
1, 2, 3, . . . , n, . . .

∣∣ ω, 1
2
ω, 1

4
ω, . . . , 1

2m
ω, . . .

}
. (Square

it!) Hence work out the sign expansion for
√
ω.

3. Conway normal form

3.1. Omega map. Firstly we need to define the function ωx which somehow
represents the ‘ordinal power’ of omega. (This is different to exponentiation of
surreal numbers, via the analytic surreal exponential function exp, say.)

We call two positive surreal numbers commensurate if there exists a positive integer
n such that x < ny, and y < nx. For example, 5 and 7 are commensurate, with
n = 2. But 7 and ω − 1 are not commensurate since 7n < ω − 1, for any n. And ω,
and ω1/2 are not comensurate, since nω1/2 < ω for any n, since ω1/2 = { n | ω/n }.
This is a (convex) equivalence relation, i.e. x < z < y and x, y commensurate
implies xz and yz are commensurate.

Now we want to take the simplest members of each equivalence class (called a leader),
to define ωx. I.e. ω0 = 1, the simplest lead of all. Then ω± are the next simplest
leader to the left and right of ω0 = 1, i.e. ω1 = ω, ω−1 = ε = 1/ω. So ω3/4 is the
simplest leader between ω1/2 and ω1. The formal definition is

Definition 6.7 (ω map).

ωx :=
{

0, rωx
L
∣∣∣ rωxR

}
,

where r ranges over all (Conway) real numbers.

Theorem 6.8. Every positive number x is commensurate with some ωy.
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Proof. Write x =
{

0, xL
∣∣ xR

}
, with xL/R positive. By induction each xL/R is

commensurate with some ωy
L/R

. If x is commensurate with one of its parents, then
we are done. So assume not. Well this means that x is not commensurate with any
ωy

L/R
. Since 1

n
ωy

L
< xL < x, some n, we get ωy

L
< nx. Therefore we cannot have

x < nωy
L
, so nωy

L ≤ x. Let r ≥ n real, then ωy
L
< nx ≤ rx. So rωy

L ≤ x by
no-commensurateness. So rωy

L
< x for all real r. Similarly rωy

R
> x, for all real r.

So

x =
{
xL, rω

yL
∣∣∣ xR, rωyR

}

Since xL < nωyL , some n, we can drop it. Similarly since nωY
R
< XR we can drop

it.

So

x = ωy ,

for y = { yL | yR }. �

Theorem 6.9. The map ωx satisfies

• ω0 = 1
• ω−x = 1

ωx

• ωx+y = ωxωy

Proof. i) is just a trivial calculation. ii) follow from iii). So prove iii)

With ωx =
{

0, rωx
L
∣∣∣ rωxR

}
, ωy =

{
0, sωy

L
∣∣∣ sωyR

}
, we compute that

ωxωy = {0, rωxL+y, sωx+yL , rωx
L+y + sωy

L+x − rsωxL+yL ,

rωy
R+x + sωy

R+x − rsωxR+yR |sωyR+x, rωx
L+y + sωy

R+x − rsωxL+yR ,

rωx
R+y, rωx

R+y + sωy
L+x − rsωxR+yL}

using the induction assumption.

Since xL + y, x+ yL > xL + yL, we see that the maximum index is either xL + y or
x + yL. Therefore rωx

L+y + sωy
L+x − rsωxL+yL is ≤ (r + s) max(ωx

L+y, ωx+yL), so
we can drop it. Since ωx ≤ rωxR any positive real r (so if x < y, ωx < rωy, any
positive real r) we see that the RR-left parent is negative, so we can drop it.

On the right hand side, similarly, we can drop both LR and RL parents, giving

ωxωy =
{

0, rωx
L+y, sωx+yL

∣∣∣ rωxR+y, sωx+yR
}

= ωx+y

So the proof is complete. �

3.2. Conway normal form. Now we can describe the Conway normal form of
a surreal number. Let x be a positive surreal number (use −x, if x < 0). Then we
can pick ωy0 commensurate with x

Since x is commensurate with ωy0 , ωy0 < nx and x < nωy0 , for some positive
integer n. So considering L = { r | rωy0 ≤ x }, R = { r | rωy0 > x } , we see n ∈ R,
and −n ∈ L. So one of L,R contains an extremal point r0. (If supL 6∈ L, the
R 3 supL = inf R.)
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So write

x = ωy0r0 + x1 .

Then −x < nx1 < x, for any integer n, so x1 is small compared to x. (Why? Well
if nx1 > x (wlog), then

x1 >
1

n
x ,

so

ωy0r0 = x− x1 < (1− 1/n)x ,

so

ωy0
r0

1− 1/n
< x .

Yet r0/(1− 1/n) > r0, so r0 was not extremal.)

We can repeat this with x1, et cetera to get

x = ωy0r0 + ωy1r1 + . . .+ ωynrn + xn+1 .

If any xi = 0, we get a finite sum. Otherwise the expansion may continue for more
than ω steps. What does this mean?

Suppose that for β < some α, we have defined the β-term ωyβrβ of x. THen
∑

β<α

ωyβrβ

is define to be the simplest number whose β term is ωyβrβ.

Now we can write

x =
∑

β<α

ωyβrβ + xα ,

some xα.

If xα = 0, set the α-term to be 0. Otherwise the α-term is ωyαrα, where ωyα is
commensurate with ±xα, and xα− ωyαrα is small compared to xα. This defines the
|alpha-term for all ordinals α.

Since
∑

β<α ω
yβrβ is the simplest number having the same β-term as x, for all β < α,

this partial sum belongs toMγ, where γ is the birthday of x. The partial sums cannot
all be distinct for all ordinals α, so eventually the α-term is 0 for some α, and all
terms beyond. x is the simplest number having the same β term as x, for all β < γ!

Theorem 6.10 (Conway Normal Form). Every surreal number x can be written
uniquely in the (Conway normal) form

∑

β<α

ωyβrβ ,

where α is some ordinal, the numbers rβ, β < α are non-zero reals, and yβ form a
decreasing sequence of surreal numbers.

Every such form satisfying these conditions occurs, and the normal forms for distinct
x are also distinct.
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Basically surreal numbers can be written as ordinal length sums of powers of ω, with
real coefficients. One can show that adding/multiplying surreal numbers is equiv-
alent to adding/multiplying these normal forms in the obvious way as polynomials
in ω.

In fact this leads to the result that surreal numbers ∼= R((ωsurreal numbers)); the FIELD
structure of surreal numbers can be obtained from the additive GROUP structure
via the “Hahn series”/“Malcev-Neumann transfinite power-series construction” with
monomials ωx, as x varies over the surreal numbers.

We can group the terms of the series
∑

β<α ω
yβrβ, according to yβ < 0, = 0, > 0 to

see that every surreal number can be written as

x = infinitesimal part + real part + infinite part





CHAPTER 7

Combinatorial Games

Lecture 11
Cancelled

Lecture 12
18/01/2017

In this chapter we want to switch focus a bit, and explore combinatorial games using
surreal numbers and ideas we have developed so far. We will focus on two specific
games: Hackenbush and Nim.

Nim is an impartial game meaning the two players have exactly the same possible
moves. This means that so games are not surreal numbers because they have the
form G = { S | S } for some set S. And obviously the condition no gl ≥ any gr
fails since ever gl is equal to some gr. These games have a very deep and interesting
theory behind them.

However Hackenbush is a partisan game, meaning the two players have different
possible moves. In the restrained version of Hackenbush every game we encounter
is actually a number ! Whereas the unrestrained version is an impartial game, and
equivalent to some nim game. A more general version of Hackenbush (again partisan)
subsumes these both.

We will start with the restrained version of Hackenbush because it has (in some
sense) the simplest theory.

1. Hackenbush restrained

Definition 7.1 (Hackenbush restrained). Hackenbush is a game played on a picture
(graph) with some blue edges and red edges joining nodes. Each node is connected
by a path to the ground (a certain dotted line).

On his turn, left (bLue) may chop a blue edge, whereas right (Red) may chop a red
edge. After an edge is chopped, it disappears as does any edges which are no longer
connected to the ground.

The game ends when no edge remains to be chopped, and the player who is unable
to move is the loser.

Let’s play a simple game of Hackenbush.

57
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I’ll play red, and you play blue. Do you want to go first, or second?

It looks like the right player can always win! Recall we introduced the following
relations

• G > 0 if there is a winning strategy for left
• G < 0 if there is a winning strategy for right
• G = 0 if there is a winning strategy for player 2
• G ‖ 0 if there is a winning strategy for player 1

So this game of Hackenbush is < 0. Does this mean it has a numerical value? If so,
what is it? (Not necessarily, since { −1 | −3 } is ≤ 0. Check the definition of ≤, or
use the above interpretation! Yet { −1 | −3 } is not even a number!)

Let’s play through the game exhaustively.

G = =

{ }
= −1/2 < 0

∣∣∣∣∣, ,

−1

−1 1
2

0

3
4

So now, let’s consider the subsequence positions

=

{ }
= −1

∣∣∣∣∣

=

{ }
= −2

∣∣∣∣∣

=

{ }
= −1

∣∣∣∣∣

=

{∣∣∣∣∣

}
= 0

=

{ }
= 0

∣∣∣∣∣

=

{ }
= 1

∣∣∣∣∣

=

{ }
= 3/4

∣∣∣∣∣

=

{ }
= 1/2

∣∣∣∣∣

=

{ }
= −1 1

2

∣∣∣∣∣

We find that G = −1/2 < 0, so yes there should be a winning strategy for Right.
What is this strategy? It’s built up recursively using that fact that all Hackenbush
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positions are numbers! We see above that G is equal to a number, as is each
subsequence position. This is a general result for Hackenbush.

We can give the following winning strategy: Since all left options are < 0, left can
only move to a position where right wins. Some right options are ≤ 0. If there is a
right option < 0, and it is right’s move, move to it, and right still wins. Otherwise
move to option 0, then it is left’s move. But we are in a position where the second
player (i.e. right) wins!

(One can also see how to potentially justify the relations <,>,=, ‖ recursively by
giving such strategies.)

L L

L

R
R

R R

Left loses

L

I claimed above that every Hackenbush position is a number. How do we see this?
Let’s see first how to interpret +,− on games. We have the formulae from previous,
but we can see

−G = { −GR | −GL } ,

as playing the game G but with the left and right players swapped. If I play left in
G and you play right, then in −G I play right, and you play left. (In Hackenbush,
just swap the color of the edges)

Also in

G+H =
{
gL + h, g + hL

∣∣ gR + h, g + hR
}

,

we see the game G+H is played by picking one and only one of G or H to play in
each turn. In Hackenbush, we just draw the games G,H next to each other in the
game playing field.

Theorem 7.2. i) On chopping a blue edge, the value decreases, on chopping
a white edge, the value strictly increases.

ii) The value of every Hackenbush position is a number

Proof. Let G = {GL | GR } be a Hackenbush position. We want to show that
gL < G, and G < gR. It will then follow that G is a number.

Suppose gL is obtained by removing some blue edge e and any now disconnected
edges S. To show gL < G, we show that gL −G < 0, i.e. in the game gL −G, there
is a winning strategy for right.



60 7. COMBINATORIAL GAMES

e e′

S S′

gL −G

If right moves first, he should delete the corresponding (red) edge e′ in −G moving
to the position gL − gL = 0. This is now a win for right since he plays second. He
can win by always copying left’s move in the other component.

If left moves first, and plays in gL right simply copies the move with the correspond-
ing one in −G. For every move left makes, right has a response so right cannot lose
here. Similarly if the move is in (−G) but not in S ′ ∪ e′. If the move is in S ′ ∪ e′,
then the move cannot be at e′ since this is red, so the move is in S ′. Now right
simply cuts at e′ reducing to gL − gL = 0 and wins as before.

In either case right wins, so gL−G < 0, which shows gL < G. By symmetry, we get
G < gR, and the theorem is proven. �

Knowing that

G = =

{ }
= −1/2 < 0

∣∣∣∣∣, ,

−1

−1 1
2

0

3
4

we perhaps might think that the following Hackenbush position is equal to 0, and
so can be won by the second player. Try it and see!

G+ 1
2 =

1.1. Evaluating Hackenbush positions. We know every Hackenbush posi-
tion has a numerical value.Lecture 13

25/01/2017

But how can we find it? For single stalks we see there
is some strong similarity to the sign expansion: blue is +, red is −.

Fact 7.3 (Evaluating sign expansions of real numbers, Berlekamp). The sign ex-
pansion s1 · · · sn can be evaluated as follows. We ca assume s1 = +. If it consists of
only +’s, it is n. Otherwise bracket the first +−. The +’s before this is the integer
part. The signs after this form the binary expansion using + ↔ 1 and 0 ↔ −. If
the length of s is finite, append a final 1.

E.g. + + + + + − + − − + − = + + + + (+−) + − − +− → 4 + 0.10010[1]2 =
4 + 1

2
+ 1

16
+ 1

64
= 437

64
.

Also (+−)ω = (+−) +−+−+− · · · = 0 + .101010 · · ·2 =
∑∞

i=0
1
2

1
4i

= 2
3
.

For trees there is a nice theory. But in general there finding the value of a red-blue
Hackenbush position is NP-hard (See Chaper 7 of Winning Ways: Volume 1).

Let’s consider how the value of
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G

is related to the value of G. What positions can left move to, and what positions
can right move to? We see

G =

{
gL gR

}∣∣∣∣∣

.

To describe this we introduce the following notion.

Definition 7.4 (Ordinal sum). The ordinal sum 1 : x of 1 and x is defined by

1 : x ≡
{

0, 1 : xL
∣∣ 1 : xR

}
.

Theorem 7.5. If x is a real number, then 1 : x can be obtained by the first value
from

x+ 1

1
,
x+ 2

2
,
x+ 3

4
, . . . ,

x+ n

2n−1
, . . .

where x+ n > 1.

So this does not depend on the form of x, only the value.

Proof. We only sketch the proof. From the expression above, we see that 1 : x is
positive. And also 1 : xL < 1 : x < 1 : xR. So 1 : x maps all surreal numbers to
positive surreal numbers, in order of simplicity.

We see 0 7→ 1, 1 7→ 2, and generally integer ` 7→ ` + 1 = `+1
20

. Similarly −1 7→ 1
2
,

−2 7→ 1
4
, and generally −` 7→ 1

2`
= −`+(`+2)

2`+1 .

x −5 −4 −3 −2 −1 0 1 2 3 4 5
1 : x 1

32
1
16

1
8

1
4

1
2

1 2 3 4 5 6

Where do the other numbers fit in? Well the simplest number between −3 and −2
is halfway between them, and this maps to the simplest number between 1

8
and 1

4
,

also halfway between them. This holds generally, so that the intervals n, n + 1 are
mapped linearly onto the image intervals.

Every x ≥ 0 is just shifted by 1, x 7→ x + 1. If −1 ≤ x ≤ 0, we map it to [1/2, 1]
by x 7→ x+2

2
. If −2 ≤ x ≤ −1, we map it to [1/4, 1/2] by x 7→ x+3

4
, and so on. This

gives the formulae above.

[We see that this breaks down for non-real numbers, as 1 : ω = { 0, 1 : n | } = ω.] �

Similarly we can evaluate

G =

{
gL gR

}∣∣∣∣∣
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using

−1 : x ≡
{
−1 : xL

∣∣ 0,−1 : xR
}

the ordinal sum of −1 and x. This can be otained by the first value from

x− 1

1
,
x− 2

2
,
x− 3

4
, . . . ,

x− n
2n

, . . .

where x− n < −1.

We have rules like the following

x y z
= 1 : (x+ y + z)

With this we can evaluate any sum of trees to determine the winner. The value
written on each edge is the value of the tree obtained by removing any edges lower
down then the current one.

−1

−1
1 1/2

−3/4 −1
−1

−1 1/4
5/8

−1/8 =

−1 1
8

15
32

1

−1/2

So in this position, the game G has value −1/32 < 0, so this is a win for right. (But
only just!)

Berlekamp also gives a also rule for evaluating certain loops. Find the two sign
changes nearest the ground. Cut the loop at exactly midway between these two
points (either at a vertex, or in the middle of an edge which generates two new
edges!). Sum the two resulting values.

9/16− 27/16 = −18/16
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2. Nim

Lecture 14
01/02/2017Definition 7.6 (Nim). Nim is a game played with some number of heaps of match-

sticks (or coins, etc). On each turn, a player may remove any positive number of
matchsticks from exactly one pile so as to strictly decrease the number of stick in
that pile. The sticks are discarded.

If a player has no moves remaining, then he loses.

Let’s play a game of nim. I’ll be polite and let you go first.

4 1 36
Let us try to analyse this game using Conway’s surreal numbers and games.

If we have a pile of size n, let’s write ∗n for it. We can express the moves from
position ∗n as follows

∗n = { ∗0, ∗1, . . . , ∗(n− 1) | ∗0, ∗1, . . . , ∗(n− 1) } .

Since nim is an impartial game, the left and right options are always equal, so let’s
abbreviate this as

∗n = { ∗0, . . . , ∗(n− 1) } .

For n ∈ N, we call these things nimbers.

Playing with multiple piles is simply adding the corresponding piles as games, so
the above game is

∗6 + ∗4 + ∗1 + ∗3 ,

whatever that evaluates so.

Moreover, we see that ∗0 = { } = 0, and ∗1 = { ∗0 } = { 0 | 0 } = ∗ (we previously
called this game ∗. . . ). Then ∗2 = { 0, ∗ | 0, ∗ }

2.1. Properties of nimbers. The behaviour of addition of nimbers is very
unusual, compared to the what we know about adding numbers. We can of course
use the same definition of addition. . .

Lemma 7.7. Suppose ∗n is a nimber. Then ∗n+ ∗n = ∗0 = 0.

Proof. There is a winning strategy for the second player in the game ∗n + ∗n:
copy the first player’s move. Therefore ∗n+ ∗n = 0. �

An important theorem in the theory of impartial games is the Sprague-Grundy
Theorem which says that every (short, i.e. with finitely many positions) impartial
game is equal to some nimber. We therefore know that ∗6 + ∗4 + ∗1 + ∗3 = ∗n, for
some n. But which?

First let’s try to indicate the proof the Sprague-Grundy Theorem.
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Theorem 7.8 (Precursor). Let G be an impartial game played with a finite collection
of numbers from 0, 1, 2, . . . . Each move affects exactly one number, allowing any
decrease and possibly some increases. The rules of the game ensure that the same
always terminates. Then the outcome is equivalent to the corresponding nim game.

Proof. Whichever player has a nim winning strategy can use it without using the
extra moves. If the opponent uses any of the extra moves, simply undo it returning
to the previous configuration. But we are closer to the end of the game as stipulated
by the rules.

Moreover, by undoing the extra moves if necessary and copying the moves in the
other game (nim if G, or G if nim), we see that the second player wins G−nim game,
so it is = 0. �

Theorem 7.9 (Sprague-Grundy). Any (short) impartial game is equal to some
nimber/nim-heap

Proof. We use induction. Suppose G = {G1, G2, . . . }. Then the theorem is true
for each G1, so we have Gi = ni∗. Hence

G = { ni∗ } .

Let n = minimal excluded elementn1, n2, . . . be the smallest number which does not
appear in n1, n2, . . .. We claim that G = n∗.
This game is played with the single number n. Any decrease is possible since every
number 1, 2, . . . , n−1 is not excluded (it is smaller than the minimal excluded one!).
Some increases are possible, but we cannot move to n.

Using the previous theorem we see that G is equal to the nim pile ∗n. �

This ∗n is called the (Sprague-)Grundy number of G.

From this we can work out how to add nimbers. In the example above we have

∗1 + ∗3 = { ∗1 + ∗0, ∗1 + ∗1, ∗1 + ∗2, 3 + ∗0 } = { ∗1, ∗0, ∗1 + ∗2, ∗3 }
Then

∗1 + ∗2 = { ∗1 + ∗1, ∗1 + ∗0, ∗2 + ∗0 } = { ∗0, ∗1, ∗2 } = ∗3 ,

meaning

∗1 + ∗3 = { ∗1, ∗0, ∗3, ∗3 } = ∗2

Then

∗4 + ∗2 = { ∗4 + ∗0, ∗4 + ∗1, ∗2 + ∗0, ∗2 + ∗1, ∗2 + ∗2, ∗2 + ∗3 }
= { ∗4, ∗4 + ∗1, ∗2, ∗3, ∗0, ∗2 + ∗3 }

= { ∗4, ∗5, ∗2, ∗3, ∗0, ∗1 } = ∗6 .

(Since ∗4+∗1 = { ∗4 + ∗0, ∗1 + ∗3, ∗1 + ∗2, ∗1 + ∗1, ∗1 + ∗0 } = { ∗4, ∗2, ∗3, ∗0, ∗1 } =
∗5.)

So finally ∗6 + ∗6 = ∗0. And this is why I won the game we played at the start!
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More generally

∗a+ ∗b = mex { ∗a′ + ∗b, ∗a+ ∗b′ : a′ < a, b′ < b } ,

where mex means the minimal excluded element, minimal in the sense of the grundy
number ∗n→ n.

2.2. XOR addition of nimbers. We Lecture 15
08/02/2017

can add nimbers like this, but it is time
consuming. Is there a better way? The intuition from Sprague-Grundy is that
nimber addition is the first thing it can possibly be, and this turns out to be xor
addition – start writing down a possible addition table and see.

Theorem 7.10 (Nimber addition). Let a, n ∈ Z≥0.

• If 2n > a, then ∗2n + ∗a = ∗(2n + a).
• Nim addition of ∗a and ∗b is binary addition without carry
• If a, b < 2n, then ∗a+ ∗b = ∗c, with c < 2n.

Proof sketch. To show the first point, we show that the second player wins in
the game ∗(2n + a) + ∗2n + ∗a, hence it is = ∗0. This is by induction on n and on a.

a

n

0 1 2 3 Trivial here

For n = 0 or a = 0 the result is trivial. For n = 0, we must have a < 20 = 1, so
a = 0 anyway. And for a = 0, we certainly have

∗20 = ∗0 = ∗(20 + 0) .

So now, assume we know that ∗2k + ∗b = ∗(2k + b) for all k < n and b < 2k. And
that ∗2n + ∗a′ = ∗(2n + a′) for all a′ < a. We want to use these, and the other
properties proven simultaneously, to show that ∗2n + ∗a = ∗(2n + a).

Suppose player 1 makes the following move, we give the reply which moves us back
to position ∗0.

• 2n + a→ 2n + a′, then move a→ a′.
• 2n + a→ b, b < 2n, then move 2n → c where ∗a + ∗b = ∗c since c < 2n by

third point.
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• a→ a′, then 2n + a→ 2n + a′.
• 2n → b, then move 2n + a → c, where ∗a + ∗b = ∗c, since c < 2n by third

point.

Then we see by induction that this is binary addition without carrying, because of
how the leading digit behaves. This is also called the XOR of the binary numbers
(for computer scientists/programmers).

Then from this we see ∗a + ∗b = ∗c, where c < 2n because we cannot possibly set
the 2n bit since neither a nor b has a 2n bit. �

We can check out earlier result

∗6 + ∗4 + ∗1 + ∗3→ (110 xor 100 xor 001 xor 011) = (000)→ 0 ∗

2.3. Winning strategy. So we can determine the winner and the winning
strategy easily now. Let G = ∗n1 + · · ·+ ∗ni be a nim-game.

If G = ∗0, then the second player wins. Otherwise G = ∗n, n > 0, and the first
player wins. sThe winning strategy is to move back to the position ∗0. This is
always possible:

Let G = ∗N be the nim-sum of G. We compute

∗ni + ∗N = ∗mi

At least one of the mi is < ni. Why? It is easiest to see this with the binary xor
result. Find the most significant bit of N , say it is d. There must be a pile with
most significant bit in position d, to make it so in N . Let this be pile n1, wlog.
Then ∗n1 + ∗N = ∗m1. We have m1 < 2d, but n1 ≥ 2d. Hence m1 < n1.

Make this move to reduce to position ∗0. This is a position where the second player,
and you are second to move.

Remark 7.11. Since either the first player wins, or the second player wins any
nimber ∗n, we have either ∗n = 0, or ∗0 ‖ 0. In particular, nimbers are not positive,
or negative! They are 0 or fuzzy.

2.4. Multiplication of nimbers. It is possible to define a multiplication on
nimbers. Or rather the multiplication definition we have from before is well defined
on nimbers.

This (amazingly) turns the nimbers into a FIELD of characteristic 2. In fact the
nimbers ∗0, . . . , ∗(2(2n) − 1) form a subfield of order 2(2n). The overall result is an
algebraically closed field of characteristic 2, which Conway calls On2.

3. Miscellaneous games: Nim variants, RBG Hackenbush, . . .

3.1. Nim variants, impartial games. We can use the Sprague-Grundy the-
orem to analyse some nim variants.
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Example 7.12. Suppose we play nim, but we are only allowed to remove 1, 2, or 3
counters each turn. Who wins? We can recursively work out the Spragu-Grundey
number of a size n pile [n]. We see

[0] = { } = ∗0
[1] = { [0] } = { ∗0 } = ∗1
[2] = { [0], [1] } = { ∗0, ∗1 } = ∗2
[3] = { [0], [1], [2] } = { ∗0, ∗1, ∗2 } = ∗3
[4] = { [1], [2], [3] } = { ∗1, ∗2, ∗3 } = ∗0

Generally this is periodic with period 4, so the Sprague-number is given by

[n] = ∗(n mod 4) .

Who wins the game [5] + [7] + [2], and what is the winning move? Well

[5] + [6] + [2] = ∗1 + ∗2 + ∗2 = ∗1 ,

so the first player wins. To find a winning move, we must find a move which moves
to position *0. We find that

[5, 6, 2]→ [4, 6, 2]

is such a move. (Check that player 1 has a winning response to any move by player
2.)

3.2. Hackenbush unrestrained.

Definition 7.13 (Hackenbush Unrestrained). Hackenbush unrestrained is played in
the game way as Hackenbush restrained, but all edges are green. Green edges can
be cut by either player.

Since both players have the same possible moves, this is an impartial game. By the
Sprague-Grundy theorem, any Hackenbush unrestrained game is equivalent to some
nimber ∗n.

Principles for playing Hackenbush unrestrained:

Fact 7.14. i) Colon principle: when branches come together at a vertex, one
can replace the branches by a stalk with the same nim sum.

ii) Fusion principle: vertices on any loop can be fused without changing the
Sprague-Grundy number.

With these in mind, we can outline a procedure for finding the Sprague-Grundy
number of any Hackenbush unrestrained position.

Fact 7.15. The Grundy number (also called the weight) of Hackenbush unrestrained
game can be found as follows.

Identify all vertices in a loop to a single vertex, and collapse all edges to loops at a
node. (This is only to compute the value!) The loops can be replaced with leaves
(in the sense of tree graphs).

Starting from the leaves, write the number (a1 +2 a2 +2 · · ·+2 an) + 1 on each edge,
where ai are the numbers on the edges immediate above the current edge and +2

means the nim-sum. These numbers give the stress σ(x) on edge x.
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The weight of an edge is (σ(x)|0) where

(x|y) =

{
2n+1 − 1 x ≡ y modulo 2n but not modulo a higher power of 2.

−1 x = y

The weight of the picture is given by the sum over weights of all root edges.

Example 7.16. we apply it to the following ‘stick man’

1

1 1 1

2
2 1

1

1 1

The root stresses are 1, 1, 1. But (1|0) = 21 − 1 = 1, so the weights are also 1 and
this game should be equivalent to ∗1 + ∗1 + ∗1 = ∗1. This means a win for the first
player. Indeed: first player takes the body, and we are reduced to just the two legs
∗1 + ∗1 = ∗0. Whichever one player 2 takes, the player 1 can take the remaining
one.

3.3. RBG Hackenbush.

Definition 7.17 (RBG Hackenbush). RBG Hackenbuhsh played in the game way
as Hackenbush restrained, but some edges can be green. Green edges can be cut by
either player.

On right’s turn, he must cut either a red edge, or a green edge. On left’s turn, he
must cut either a blue edge, or a green edge.

In some sense you can see RBG Hackenbush as a simultaneous generalisation of
Hackenbush restrained, and of Nim. With no green edges, we have Hackenbush
restrained. With only green edges (arranged into stalks), we have Nim or more
generally Hackenbush unrestrained. So this is going to be more complicated than
either of them!

One discovers some interesting positions in RBG Hackenbush

Example 7.18. In Winning Ways Conway gives the following as an example of a
RBG hackenbush position. The flower G below is fuzzy: the first player wins by
taking the green edge, so it is definitely 6= 0.
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On the other hand, it is less than any positive number, and greater than any negative
number. G− 1

2n
< 0

...

Right wins this as follows.

If right moves first: chop the green edge, then the position remaining is < 0, so right
wins.

If left moves first, he either chops the green edge and right wins. Or he chops a
petal, and right chops the green stalk. Otherwise he chops the Hackenbush stalk,
and then right chops the green edge.

By using the sign expansion of a positive number to build the stalk, the result holds
generally for any positive number. Flower < any positive number.

Example 7.19. More interesting is a positive Hackenbush RBG game, which is
still less than all positive numbers. Conway gives the following house position G in
Winning Ways.

G > 0 since left can win. The key point is which player cuts the first (green) wall.
Whoever does this loses, since the other play cuts the remaining one and wins.
Starting with the chimney, if left goes first he can can make at least 5 moves (one
edge of the chimney plus 4 blue edges), whereas right can make only 4 moves (3 red
plus the other chimney edge). If right goes first, then left can take the top two blue
edges, leaving 2 blue to one 1 red.

So right must take the first green wall, and so lose.

However G− 1
2n
< 0 because right can win.

If right goes first: take a green wall. If blue takes the other the result is < 0. If blue
takes any roof edge the or a stalk edge then take the other green wall and the result
is < 0.
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Suppose left goes first. If he takes a green wall, take the other and the result is < 0.
If he takes a roof or a stalk edge, take a green wall. (If blue takes the other it is
< 0, if blue takes a root or a stalk, take the other and it is < 0.)

So this house G is > 0, but < any positive surreal number! It is genuinely infinites-
imal!

Like the house, the more abstract combinatorial game ↑:= { 0 | ∗ } is a positive
infinitesimal. This is but the start of a whole series of games which appear ‘in the
gaps’ (Dedekind sections of surreal number), which Conway studies in On Numbers
and Games and in Winning Ways.



CHAPTER 8

Potential further topics for games and for surreal numbers

This course only just scratches the surface surreal numbers, and combinatorial game
theory. Some further reading can include:

i) Number theory with surreals: omnific integers and solutions to diophantine
equations. Solutions to x2− (ω+3)y2 = 1 give convergents to

√
ω + 3. E.g.

(2/3ω + 1)2 − (ω + 3)(2/3
√
ω)2 = 1. (ONAG, Gonshor)

ii) Integration, and analysis on surreals. Problems with defining integral.
iii) Games ‘in the gaps’ (Starts in ONAG, more in Winning Ways)
iv) Many different kinds of ‘addition of games’ (must play in all components,

can play in any number of components, can play in only 1 component +)
(ONAG Chp 14)

v) Deeper results for RBG Hackenbush: weakly order preserving functions:
adding multiple wedges underneath.

vi) Temperature theory, thermographs, cooling games. (ONAG)
vii) Applications to ‘real’ games such as Go. (Mathematical Go)
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