NUMBERS! - PROBLEM SHEET 2

- (1) Check that the list of 20 surreal numbers formed from subsets of $\{-1, 0, 1\}$ is complete. How long is the list formed from subsets of $\{-2, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 2\}$ on Day 3?
- (2) Complete the proof to show $\{0 \mid 1\} < 1$.
- (3) Check some of the Day 2 (in)equalities directly. Check, say, $\{-1 \mid 0\} < \{-1 \mid 1\}$. But you may not use that $\{-1 \mid 1\} = 0$ to say $-1 \not\geq \{-1 \mid 1\}$, since we have not yet proved that x = y and $y \not\geq z$ implies $x \not\geq z$!

We will prove the following Proposition soon.

Proposition. Let $x = \{X_L \mid X_R\}$ be a surreal number. If $y \not\geq x$, then $x = \{y, X_L \mid X_R\}$. Also, if $y \not\leq x$, then $x = \{X_L \mid X_R, y\}$.

- (4) Use this proposition to justify the equalities for the Day 2 surreal numbers.
- (5) Assume it known that the Day 2 surreal numbers are totally ordered: $-2 < -1 < -\frac{1}{2} < 0 < \frac{1}{2} < 1 < 2$. Convince yourself that only the largest element of X_L , and the smallest element of X_R matter when checking =. Now try to list the surreal numbers on day 3.
- (6) You should have found the number $\{0 \mid \frac{1}{2}\}$ on Day 3. What do you think its value should be? (We will determine and justify its value later.)
- (7) What happens on Day 4? How many new numbers? Can you guess the pattern?