NUMBERS! - PROBLEM SHEET 3

- (1) Complete the proof for the $y \leq x$, and $b \equiv \{X_L \mid y, X_R\}$ has b = x case.
- (2) Suppose that $x = \{ X_L \mid X_R \}$ is a surreal number, and that X_L and X_R are finite sets. Show that $x = \{ \max X_L \mid \min X_R \}$, so only one element is necessary in the left set, and in the right set.
- (3) Justify all of the equalities and inequalities on day 2 using these two results.
- (4) Check (using exactly the same definition as for numbers) that $0 \not\leq \{0 \mid 0\}$, and $\{0 \mid 0\} \not\leq 0$. So games 0 and $\{0 \mid 0\}$ cannot be compared. $\{0 \mid 0\}$ is said to be 'fuzzy' against 0.

Below, we will analyse the situation on day n in more detail.

(5) Suppose that on day n, we have the following list of numbers

$$x_1 < x_2 < \cdots < x_m \, .$$

- (a) Using the question (2), produce a list of all possible numbers that appear on day n + 1.
- (b) Show that $\{ |x_1\}, \{x_m | \}$ and $\{x_i | x_{i+1}\}$ for i = 1, ..., m 1 are new numbers which do not exist on day n.
- (c) How are these new and old numbers ordered?
- (d) (Simplicity Theorem) Show that the remaining numbers already exist on day n. For the number $y \equiv \{x_i \mid x_j\}$, consider the earliest created number(s) $x_{i+1} \leq z \leq x_{j-1}$. Show that y = z.

(e) What happens for $\{x_i \mid \}, i = 1, ..., m-1$, or $\{\mid x_j\}, j = 2, ..., m$? Now using the definition of addition, we can determine the values of all of these numbers

- (f) Suppose x is the largest number on some day, show that $x+1 = \{x \mid \}$.
- (g) Now suppose that a < b are surreal numbers such that there is no a < w < b older than either of them (created earlier than a, or created earlier than b). Show that $\{a \mid b\} + \{a \mid b\} = a + b$. Hence deduce the values of numbers on all finite days.