NUMBERS! - PROBLEM SHEET 4

- (1) Show that the collection of all surreal numbers is too large to form a set, that is show surreal numbers form a proper CLASS.
- (2) Investigate this operation

$$x \oplus y = \left\{ x^L \oplus y^L \mid x^R \oplus y^R \right\} \,.$$

(Recall this that might be a first naïve guess for how to define +.)

- (3) For all surreal numbers x, y, z, show that the following identities/equalities hold using 'one-line' proofs.
 - (a) $x0 \equiv 0$,
 - (b) $x1 \equiv x$,
 - (c) $xy \equiv yx$,
 - (d) $(-x)y \equiv x(-y) \equiv -(xy),$
 - (e) (x+y)z = xz + yz,
 - (f) (xy)z = x(yz)
 - Can we replace = with \equiv in e), or f)?

Recall that we proved multiplication of surreal numbers is well-defined under =. The same is not true for games.

- (4) Show how the remaining three cases of $(xy)^L < (xy)^R$ in i) of the proof that xy is a number reduce to combinations of $P(x_1, x_2 : y_1, y_2)$.
- (5) Show how the remaining cases of $(x_1y)^L < x_2y < (x_1y)^R$ in ii) of the proof that xy is a number reduce to combinations of P.
- (6) Find a game g, such that $\{1 \mid \}g \neq \{0,1 \mid \}g$, even though $\{1 \mid \} = \{0,1 \mid \} = 2$.

Recall how we defined $y = \frac{1}{x}$ in lectures.

- (7) (Challenge) Try to come up with a definition of $y = \sqrt{x}$, which works for non-negative surreal numbers.
- (8) Recall $\omega = \{0, 1, 2, \dots \mid \}$ is an 'infinite number', and $\epsilon = \{0 \mid 1, \frac{1}{2}, \frac{1}{3}, \dots \}$ is an 'infinitesimal number' (less than any real number). What is the value of $\epsilon \omega$? (It should be a very familiar number.)