Primes - Handout 2

Quadratic forms and quadratic number fields (NON-EXAMINABLE)

For simplicity, we will restrict to fundamental discriminants, those which occur as the discriminant Δ_K of some quadratic number field $K = \mathbb{Q}(\sqrt{d})$. But this correspondence can be generalised to orders $\mathbb{Z}[\sqrt{d}] \subset \mathcal{O}_K$ inside the field $K = \mathbb{Q}(\sqrt{d})$.

For the case of \mathcal{O}_K , see Section VII.2 in [FT93]. For the more general case, see Section 5.2 in [Coh13].

1.1. Narrow idea class group of a quadratic number field

A quadratic number field K is

$$\mathbb{Q}(\sqrt{d}) \coloneqq \left\{ a + b\sqrt{d} \mid a, b \in \mathbb{Q} \right\}$$

The ring of integers $\mathcal{O}_K \subset K$ consists of all elements of K which satisfy a *monic* polynomial over \mathbb{Q} . We can assume d is square-free, then we have

$$\mathcal{O}_{K} = \begin{cases} \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{x + y\frac{1+\sqrt{d}}{2} \mid x, y \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{d}] = \left\{x + y\sqrt{d} \mid x, y \in \mathbb{Z}\right\} & \text{if } d \equiv 2, 3 \pmod{4}. \end{cases}$$

The norm of $a + b\sqrt{d} \in K$ is defined by $N(a + b\sqrt{d}) \coloneqq (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2$, so

$$N(x+y\frac{1+\sqrt{d}}{2}) = x^2 + xy - dy^2$$
$$N(x+y\sqrt{d}) = x^2 - dy^2$$

Consider the set $\mathcal{I}(K)$ of all non-zero *fractional ideals* $\lambda \mathfrak{a}$ of \mathcal{O}_K , where $\lambda \in K^*$ and $\mathfrak{a} \subset \mathcal{O}_K$ is an ideal.

An element λ of K is totally positive, if $\sigma(\lambda) > 0$ for every real embedding $\sigma: K \to \mathbb{R}$. For d < 0, there are no real embeddings, so every element of K is totally positive. For d > 0, we require $a + b\sqrt{d}$, $a - b\sqrt{d} > 0$ for $\lambda = a + b\sqrt{d}$ to be totally positive.

Write $\mathcal{P}^+(K)$ for the set of all *totally positive* principal fractional ideals (λ) where λ is totally positive.

Definition 1 (Narrow ideal class group). The *narrow ideal class group* of K is

$$\mathcal{C}^+(K) = \mathcal{I}(K)/\mathcal{P}^+(K)\,,$$

and the (usual) *ideal class group* of K is

$$\mathcal{C}(K) = \mathcal{I}(K) / \mathcal{P}(K) \,.$$

Theorem 2. If d < 0, so K is imaginary-quadratic, then $\mathcal{C}^+(K) = \mathcal{C}(K)$. If d > 0, so K is real-quadratic, then $\mathcal{C}^+(K) \supset \mathcal{C}(K)$. Equality holds if and only if there is a unit $u = x + y\sqrt{d}$, or if appropriate $u = x + y\frac{1+\sqrt{d}}{2} \in \mathcal{O}_K$ with norm -1. Otherwise $\mathcal{C}^+(K)/\mathcal{C}(K) = \mathbb{Z}/2\mathbb{Z}$.

Proof. If there is a unit with negative norm then $N(u) = \sigma_1(u)\sigma_2(u) = -1$, so without loss of generality $\sigma_1(u) < 0$ and $\sigma_2(u) > 0$, for the two embeddings $\sigma_i \colon K \to \mathbb{R}$. We can then take any principal ideal $(\lambda) = (u\lambda)$, and see one of λ and $u\lambda$ is totally positive. This shows $\mathcal{P}^+(K) = \mathcal{P}(K)$.

The converse follows by considering, say (\sqrt{d}) , and finding a generator $u\sqrt{d}$ which is totally positive, whence N(u) = -1.

If no unit has negative norm, then $\mathcal{P}(K) = \mathcal{P}^+(K) \cup \sqrt{d}\mathcal{P}^+(K)$, which shows $\mathcal{C}^+(K)/\mathcal{C}(K) = \mathbb{Z}/2\mathbb{Z}$.

1.2. Correspondence between narrow ideal classes and quadratic forms

Now we construct a map from narrow ideal classes in $\mathcal{C}(K)$, to proper equivalence classes of binary quadratic forms of discriminant Δ_K .

Every non-zero (fractional) ideal \mathfrak{a} has a \mathbb{Z} -basis of the form $\{\alpha_1, \alpha_2\}$. Using this the *norm* of the ideal can be calculated as

$$N(\mathfrak{a}) \coloneqq \#(\mathcal{O}_K/\mathfrak{a}) = \left| \frac{1}{\Delta_K} \det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \widetilde{\alpha_1} & \widetilde{\alpha_2} \end{pmatrix} \right|^{1/2}$$

where $\widetilde{\cdot}: K \to K$ is the non-trivial Galois automorphism $a + b\sqrt{d} \mapsto a - b\sqrt{d}$.

So call the basis $\{\alpha_1, \alpha_2\}$ normalised if

$$\det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \widetilde{\alpha_1} & \widetilde{\alpha_2} \end{pmatrix} = N(\mathfrak{a})\sqrt{\Delta_K},$$

where $\sqrt{\cdot}$ is the principal branch: $\sqrt{\Delta_K} > 0$ when $\Delta_K > 0$ and $\Im\sqrt{\Delta_K} > 0$ when $\Delta_K < 0$. Exactly one of $\{\alpha_1, \alpha_2\}$ and $\{\alpha_2, \alpha_1\}$ is a normalised basis.

Definition 3. Given a normalised basis $\{\alpha_1, \alpha_2\}$ of an ideal \mathfrak{a} , define the quadratic form

$$Q_{\alpha_1,\alpha_2}(x,y) \coloneqq \frac{1}{N(\mathfrak{a})} N(\alpha_1 x + \alpha_2 y) \,.$$

Proposition 4. The quadratic form $Q_{\alpha_1,\alpha_2}(x,y)$ is a primitive integral binary quadratic form, with discriminant Δ_K . If $\Delta_K < 0$, it is positive definite.

Proof. This is certainly a binary quadratic form $ax^2 + bxy + cy^2$, for some a, b, c. We check the coefficients are integers. We can assume \mathfrak{a} is an integral ideal, with PRIMES - HANDOUT 2

 $\alpha_1, \alpha_2 \in \mathcal{O}_K$. Then any $z = x\alpha_1 + y\alpha_2$ is in \mathfrak{a} , so $\mathfrak{a} \mid (z)$ and $N(\mathfrak{a}) \mid N(z)$. Applying this to $a = Q_{\alpha_1,\alpha_2}(1,0), c = Q_{\alpha_1,\alpha_2}(0,1)$ and $a + b + c = Q_{\alpha_1,\alpha_2}(1,1)$ shows that the coefficients are integers.

Expanding out gives $a = \frac{1}{N(\mathfrak{a})} \alpha_1 \widetilde{\alpha_1}, b = \frac{1}{N(\mathfrak{a})} (\alpha_1 \widetilde{\alpha_2} + \widetilde{\alpha_1} \alpha_2), c = \frac{1}{N(\mathfrak{a})} \alpha_2 \widetilde{\alpha_2}$. A direct computation shows the discriminant of Q is

$$D_Q = \frac{1}{N(\mathfrak{a})} \det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \widetilde{\alpha_1} & \widetilde{\alpha_2} \end{pmatrix}^2 = \Delta_K$$

Since $a = \frac{1}{N(\mathfrak{a})} N(\alpha_1) > 0$, the form is positive-definite if $\Delta_K < 0$.

Finally, for a fundamental discriminant Δ_K , any binary quadratic form is primitive. Notice that $gcd(a, b, c)^2$ must divide the discriminant $D = b^2 - 4ac$. If $d \equiv 1 \pmod{4}$ then $\Delta_K = d$ is square free. If $d \equiv 2, 3 \pmod{4}$ then $\Delta_K = 4d$, so $gcd(a, b, c) \leq 2$. And gcd(a, b, c) = 2 cannot occur, otherwise $d = \frac{1}{4}\Delta_K = (\frac{b}{2})^2 - 4\frac{a}{2}\frac{c}{2} \equiv \Box \equiv 0, 1 \pmod{4}$.

Example 5. Consider $K = \mathbb{Q}(\sqrt{-5})$ of discriminant $\Delta_K = -20$, and the ideals $\mathcal{O}_K = (1) = [1, -\sqrt{-5}]$ of norm 1 and $\mathfrak{p}_3 = [3, 1 + \sqrt{-5}]$ of norm 2. These bases are normalised.

The corresponding quadratic forms are

$$Q_{1,-\sqrt{-5}}(x,y) = \frac{1}{N(\mathcal{O}_K)} N(1 \cdot x - \sqrt{-5} \cdot y)$$

= $x^2 + 5y^2$
$$Q_{3,1+\sqrt{-5}}(x,y) = \frac{1}{N(\mathfrak{p}_3)} N(3x + (1 + \sqrt{-5})y)$$

= $\frac{1}{3} N((3x+y) + \sqrt{-5}y)$
= $\frac{1}{3} ((3x+y)^2 + 5y^2)$
= $3x^2 + 2xy + 2y^2$

Claim: $\mathcal{C}(K) = \{ [\mathcal{O}_K], [\mathfrak{p}_3] \} \cong \mathbb{Z}/2\mathbb{Z}$, and the above are representatives of all equivalence classes of primitive positive-definite BQF's of discriminant -20.

Now consider $K = \mathbb{Q}(\sqrt{65})$, of discriminant $\Delta_K = 65$ and the ideals $\mathcal{O}_K = (1) = [1, \frac{1-\sqrt{65}}{2}]$ of norm 1 and $\mathfrak{p}_2 = [2, \frac{1-\sqrt{65}}{2}]$ of norm 2. These bases are normalised.

The corresponding quadratic forms are

$$\begin{split} Q_{1,\frac{1-\sqrt{65}}{2}}(x,y) &= \frac{1}{N(\mathcal{O}_K)} N(1 \cdot x + \frac{1-\sqrt{65}}{2} \cdot y) \\ &= N((x+\frac{y}{2}) - \frac{\sqrt{65}}{2}y) \\ &= (x+\frac{y}{2})^2 - \frac{65}{4}y^2 \\ &= x^2 + xy - 16y^2 \\ Q_{2,\frac{1-\sqrt{65}}{2}}(x,y) &= \frac{1}{N(\mathfrak{p}_2)} N(2x + \frac{1-\sqrt{65}}{2}y) \end{split}$$

$$=2x^2 + xy - 8y^2$$

Claim $\mathcal{C}^+(K) = \{ [\mathcal{O}_K], [\mathfrak{p}_2] \} \cong \mathbb{Z}/2$, and the above are representatives of all equivalence classes of primitive BQF's of discriminant 65. Moreover, since $N(7+2\frac{1+\sqrt{65}}{2}) = -1$, we also have $\mathcal{C}(K) = \mathcal{C}^+(K)$.

Remark 6. The forms $x^2 + 5y^2$ and $x^2 + xy - 16y^2$ arise from the class of *principal* ideals the quadratic field. This explains why we call $x^2 + ny^2$, and $x^2 + xy + ny^2$ the principal forms for discriminant D = -4d and D = 1 - 4n, respectively. See Sheet 5, Q2.

Need to check some things to ensure this map is well-defined.

Proposition 7. Changing the normalised basis of the ideal $\mathfrak{a} = [\alpha_1, \alpha_2]$ gives a properly equivalent binary quadratic forms.

Proof. A change of basis $\underline{\beta} = B\underline{\alpha}$ between bases $\mathfrak{a} = [\alpha_1, \alpha_2] = [\beta_1, \beta_2]$ gives a matrix B in $\operatorname{GL}_2(\mathbb{Z})$. Since both are normalised $\det(B) = 1$, so $B \in \operatorname{SL}_2(\mathbb{Z})$.

A direct computation shows

$$Q_{\beta_1,\beta_2}(\underline{\mathbf{x}}) = Q_{\alpha_1,\alpha_2}(B\underline{\mathbf{x}})$$

meaning the two binary quadratic forms are properly equivalent.

Proposition 8. If $\mathfrak{a} = [\alpha_1, \alpha_2]$ and $\mathfrak{b} = [\beta_1, \beta_2]$ are two ideals in the same narrow ideal class, then the quadratic forms $Q_{\alpha_1,\alpha_2}(x,y)$ and $Q_{\beta_1,\beta_2}(x,y)$ are properly equivalent.

Proof. Since \mathfrak{a} and \mathfrak{b} are in the same narrow idea class, we have $\mathfrak{b} = (\lambda)\mathfrak{a}$, for some totally positive λ . If $[\alpha_1, \alpha_2]$ is a normalised basis for \mathfrak{a} , then $[\lambda \alpha_1, \lambda \alpha_2]$ is a normalised basis for \mathfrak{b} , since $N(\lambda) > 0$.

Then a direct calculation gives

$$Q_{\lambda\alpha_1,\lambda\alpha_2}(x,y) = Q_{\alpha_1,\alpha_2}(x,y)$$

showing the two forms are properly equivalent, and indeed for equal for choice of basis. $\hfill \Box$

So the map

 $\mathcal{C}^+(K) \to \{ BQF's \text{ of discriminant } \Delta_K \}$

is well defined. Moreover, it is bijective.

Proof. Check surjectivity and injectivity separately.

Surjectivity: Let $ax^2 + bxy + cy^2$ be a (primitive) integral BQF of discriminant Δ_K (positive-definite if $\Delta_K < 0$). Then

$$\mathfrak{a} = \left[a, \frac{b - \sqrt{\Delta_K}}{2}\right]$$

is a fractional ideal of K with indicated Z-basis. If $\Delta_K < 0$, set $\lambda = 1$ otherwise, take $\lambda = \sqrt{\Delta_K}$. Then

$$\lambda \mathfrak{a} = [\lambda a, \lambda \frac{b - \sqrt{\Delta_K}}{2}]$$

PRIMES - HANDOUT 2

is an ideal of norm $aN(\lambda)$, with normalied basis.

A direct calculation gives

$$Q_{\lambda a,\lambda \frac{b-\sqrt{\Delta_K}}{2}}(x,y)=ax^2+bxy+cy^2$$

Injctivity: Suppose $\mathfrak{a} = [\alpha_1, \alpha_2]$ and $\mathfrak{b} = [\beta_1, \beta_2]$ map to the same class of quadratic forms. We can assume these bases are normalised, and by changing bases, that we have $Q_{\alpha_1,\alpha_2}(x,y) = Q_{\beta_1,\beta_2}(x,y)$.

The roots of the quadratic polynomial $Q_{\alpha_1,\alpha_2}(1,y)$ are $y = -\frac{\alpha_1}{\alpha_2}$ and $-\frac{\widetilde{\alpha_1}}{\widetilde{\alpha_2}}$. So we mus have either $\alpha_1/\alpha_2 = \beta_1/\beta_2$, or $\alpha_1/\alpha_2 = \widetilde{\beta_1}/\widetilde{\beta_2}$.

The second case cannot occur: for it does, set $\lambda = \alpha_1 / \tilde{\beta}_1 = \alpha_2 / \tilde{\beta}_2$. Normalised bases means $N(\lambda) < 0$, whereas equality of quadratic forms leads to $N(\lambda) > 0$.

Therefore the first case occurs. Set $\lambda = \alpha_1/\beta_1 = \alpha_2/\beta_2$. Normalised bases means $N(\lambda) > 0$. Then we have $\mathfrak{a} = \mu \mathfrak{b}$, for some totally positive $\mu = \pm \lambda$. This shows \mathfrak{a} and \mathfrak{b} are in the same narrow idea class.

1.3. Properties of the correspondence

Corollary 9. For a real quadratic field $K = \mathbb{Q}(\sqrt{d})$ of discriminant $\Delta_K > 0$, the narrow class number $h^+(K)$ is equal to the class number $h^+(\Delta_K)$ of primitive integral binary quadratic forms of discriminant Δ_K .

For an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-d})$ of discriminant $\Delta_K < 0$, the class number h(K) is equal to the class number $h(\Delta_K)$ of primitive positive-definite integral binary quadratic forms of discriminant Δ_K .

Corollary 10. Since the (narrow) ideal class group $C^+(K)$ is a group, there is a natural group structure on the set of binary quadratic forms of discriminant Δ_K . Note: this turns out to be Gauss's composition of binary quadratic forms.

Moreover, we can connect representations of positive integers m, to existence of ideals of norm m, under this correspondence.

Proposition 11. A positive integer m is represented by the quadratic form $f(x, y) \leftrightarrow \mathfrak{a}$, if and only if there is an integral ideal of norm m in the small narrow class as \mathfrak{a} .

Proof. Write $f(x, y) = Q_{\alpha_1, \alpha_2}(x, y)$ for some normalised basis $\mathfrak{a} = [\alpha_1, \alpha_2]$. Notice that \mathfrak{c}^{-1} and $\tilde{\mathfrak{c}}$ are in the same narrow ideal class since $\mathfrak{c}^{-1} = \frac{1}{N(\mathfrak{c})}\tilde{\mathfrak{c}}$.

'⇐': If **b** is an integral ideal with norm *m* in the same narrow class as **a**, rite $\tilde{\mathbf{b}} = \lambda \mathbf{a}^{-1}$, for some totally positive λ . Write $\lambda = x_0 \alpha_1 + y_0 \alpha_2$. Then

$$Q_{\alpha_1,\alpha_2}(x_0,y_0) = \frac{1}{N\mathfrak{a}}N(\lambda) = N(\widetilde{\mathfrak{b}}) = N(\mathfrak{b}) = m$$

'⇒': If $m = Q_{\alpha_1,\alpha_2}(x_0, y_0)$, then $m = \frac{1}{N(\mathfrak{a})}N(\lambda)$, for $\lambda = x_0\alpha_1 + y_0\alpha_2$. Since $N(\lambda) > 0$, one of ± λ is totally positive. Then $\mathfrak{b} = \lambda \alpha^{-1}$ is an integral ideal of norm m in the same narrow ideal class as \mathfrak{a} .

As a corollary, we can obtain our prime representability condition in a different way.

Corollary 12. An odd prime $p \mid \Delta_K$ is represented by some BQF of discriminant Δ_K if and only if $\left(\frac{\Delta_K}{p}\right) = 1$.

Proof. The positive integer p is represented by some BQF of discriminant Δ_K if and only if there is some ideal of norm p in K.

An ideal I divides its norm N(I). So there is an ideal of norm p if and only if (p) splits or ramifies in K. Assuming $p \mid \Delta_K$ means (p) does not ramify.

It is well-known that splitting of (p) is described by when $\left(\frac{D_K}{p}\right) = 1$.

Corollary 13. The primes represented by two different quadratic forms f(x, y) and g(x, y) of discriminant Δ_K are either disjoint, or identical. Moreover, if they are identical then f(x, y) and g(x, y) either properly equivalent, or are inverses (under Gauss composition) meaning they are improperly equivalent.

Proof. If f(x, y) and g(x, y) represent a prime p, then (p) decomposes as $\mathfrak{p}\widetilde{\mathfrak{p}}$ in K, where both \mathfrak{p} and $\widetilde{\mathfrak{p}}$ have norm p.

Then either f(x, y) and g(x, y) correspond to the same idea class, or they correspond to inverse ideal classes as $[\mathfrak{p}]^{-1} = [\widetilde{\mathfrak{p}}]$. If they correspond to the same ideal class, they are equivalent and so represent the same values. Otherwise a prime q represented by f(x, y) corresponds to an ideal \mathfrak{q} of norm q, then $\widetilde{\mathfrak{q}}$ is an ideal of norm q in the class corresponding to g(x, y). This shows g(x, y) also represents q.

Finally the inverse under Gauss composition of $ax^2 + bxy + cy^2$ can be shown to be $ax^2 - bxy + cy^2$, which is equivalent (possibly improperly) to the original. \Box

References

- [Coh13] Henri Cohen. A course in computational algebraic number theory. Vol. 138. Springer Science & Business Media, 2013.
- [FT93] A Fröhlich and MJ Taylor. Algebraic number theory, volume 27 of Cambridge Studies in Advanced Mathematics. 1993.