Primes - Handout 3

Jacobi symbols (NON-EXAMINABLE)

Our aim is to sketch the proof of the following Lemma, in particular giving the construction of the group homomorphism χ , described therein.

Lemma 1. If $D \equiv 0, 1 \pmod{4}$ is a non-zero integer (in particular, a discriminant). Then there is a unique group homomorphism

$$\chi\colon (\mathbb{Z}/D\mathbb{Z})^* \to \{\pm 1\}$$

such that $\chi([p]) = \left(\frac{D}{p}\right)$ for odd primes $p \nmid D$.

Jacobi symbol, definition and properties

We extend the Legendre symbol $\left(\frac{a}{p}\right)$, defined only for prime p, to a symbol

$$\left(\frac{M}{m}\right),$$

defined for any m > 0, odd, positive and coprime to M.

Definition 2 (Jacobi symbol). Let M be an integer, and m > 0 be an odd, positive integer, coprime to M. Suppose $m = p_1^{e_1} \cdots p_r^{e_r}$ be the prime factorisation of m. Then we define

$$\left(\frac{M}{m}\right) \coloneqq \prod_{i=1}^r \left(\frac{M}{p_i}\right)^{e_i},$$

by extending the Legendre symbol multiplicatively to the lower argument.

[If gcd(M, m) = 1, one can define

$$\left(\frac{M}{m}\right) = 0$$

to extend the Legendre symbol to all odd m.]

Some properties of this symbol are easy to see immediately

• If
$$M \equiv N \pmod{m}$$
, then $\left(\frac{M}{m}\right) = \left(\frac{N}{m}\right)$
• $\left(\frac{MN}{m}\right) = \left(\frac{M}{m}\right) \left(\frac{N}{m}\right)$,
• $\left(\frac{M}{mn}\right) = \left(\frac{M}{m}\right) \left(\frac{M}{n}\right)$

Proposition 3 (Quadratic reciprocity for Jacobi symbols). The Jacobi symbol $\left(\frac{M}{m}\right)$ satisfies the following quadratic reciprocity laws

•
$$\left(\frac{M}{m}\right) = (-1)^{(M-1)(m1)/4} \left(\frac{m}{M}\right)$$

• $\left(\frac{-1}{m}\right) = (-1)^{(m-1)/2}$
• $\left(\frac{2}{m}\right) = (-1)^{(m^2-1)/8}$

Sketch. These follow from quadratic reciprocity, and the supplementary laws for $\left(\frac{D}{n}\right)$. Make use of the following identities for r, s odd

$$(rs-1)/2 \equiv (r-1)/2 + (s-1)/2 \pmod{2}$$

 $((rs)^2 - 1)/8 \equiv (r^2 - 1)/8 + (s^2 - 1)/8 \pmod{2}.$

A crucial, but less well known property of $\left(\frac{M}{m}\right)$ is the following.

Proposition 4. Suppose $D \equiv 0, 1 \pmod{4}$. If $m \equiv n \pmod{D}$, then

$$\left(\frac{D}{m}\right) = \left(\frac{D}{n}\right).$$

Sketch. For simplicity, we take $D \equiv 1 \pmod{4}$, D > 0. Then using the quadratic reciprocity law, we have

$$\begin{pmatrix} D\\m \end{pmatrix} = (-1)^{(D-1)(m-1)/4} \begin{pmatrix} m\\D \end{pmatrix}$$
$$\begin{pmatrix} D\\n \end{pmatrix} = (-1)^{(D-1)(n-1)/4} \begin{pmatrix} n\\D \end{pmatrix}.$$

Since $m \equiv n \pmod{D}$, the Jacobi symbols on the right hand sides agree: $\binom{m}{D} = \binom{n}{D}$. Then we have (D-1)(m-1)/4 = (D-1)(n-1)/4, since $D \equiv 1 \pmod{4}$, and m, n are odd. So the signs are both +1, giving equality.

More generally, for D < 0, or $D \equiv 0 \pmod{4}$, one can use the supplementary laws to prove the result.

Application of Jacobi symbol to quadratic residues

Using the Jacobi symbol, one can compute more efficiently whether or not a a is a quadratic residue modulo a prime p. One does not have to factor the numerator before applying quadratic reciprocity.

Example 5. Given that 53 is prime, compute $\binom{30}{53}$ and determine whether 30 is a square modulo 53.

Using the Legendre symbol, we have to factor $30 = 2 \times 3 \times 5$, and compute

$$\left(\frac{30}{53}\right) = \left(\frac{2}{53}\right) \left(\frac{3}{53}\right) \left(\frac{5}{53}\right).$$

PRIMES - HANDOUT 3

Then one has to use quadratic reciprocity to 'flip' the symbols (or to evaluate $\left(\frac{2}{53}\right)$), to obtain

$$= (-1)^{(53^2-1)/8} (-1)^{(53-1)(3-1)/4} (-1)^{(53-1)(5-1)/4} \left(\frac{53}{3}\right) \left(\frac{53}{5}\right)$$
$$= -\left(\frac{53}{3}\right) \left(\frac{53}{5}\right)$$
$$= -1 \times -1 \times -1 = -1$$

Thus 30 is not a square modulo 53.

Using the Jacobi symbol, we can directly apply quadratic reciprocity, after removing factors of 2, to obtain

$$\begin{pmatrix} 30\\ \overline{53} \end{pmatrix} = \begin{pmatrix} 2\\ \overline{53} \end{pmatrix} \begin{pmatrix} 15\\ \overline{53} \end{pmatrix}$$
$$= (-1)^{(53^2 - 1)/8} (-1)^{(15 - 1)(53 - 1)/4} \begin{pmatrix} 53\\ \overline{15} \end{pmatrix}$$
$$= \begin{pmatrix} 8\\ \overline{15} \end{pmatrix}$$

Apply quadratic reciprocity again, to get

$$= \left(\frac{2}{15}\right)^3$$
$$= (-1)^{3(15^2 - 1)/8} = -1$$

This leads to an efficient 'Euclidean-style' algorithm for computing $\left(\frac{a}{p}\right)$, without having to factorise a into primes first.

However, one much take care when 'interpreting' the Jacobi symbol $\left(\frac{M}{m}\right) = 1$.

Remark 6. We certainly have that $M \equiv \Box \pmod{m}$ implies that $\left(\frac{M}{m}\right) = 1$, since $M \equiv \Box \pmod{p_i}$ for every prime divisor p_i of m. However, the reverse implication does not hold generally; but if m = p is prime, then the Jacobi symbol $\left(\frac{M}{p}\right)$ reduces to the Legendre symbol $\left(\frac{M}{p}\right)$, where this does hold.

For example:

$$\left(\frac{2}{15}\right) = \left(\frac{2}{3}\right)\left(\frac{2}{5}\right) = (-1)^2 = 1,$$

but the squares modulo 15 are $0, (\pm 1)^2, (\pm 2)^2, \cdots, (\pm 7)^2 \equiv 0, 1, 4, 6, 9, 10 \pmod{15}$.

Proof of the lemma

From Proposition 4 it follows that $\chi([m]) \coloneqq \left(\frac{D}{m}\right)$ is a well-defined function $(\mathbb{Z}/D\mathbb{Z})^* \to \{\pm 1\}$, as we can choose a representative [m] so that m is odd and positive. The multiplicative properties above, show that it is a group homomorphism.

Requiring that $\chi([p]) = \left(\frac{D}{p}\right)$ for a prime p fixes χ uniquely: Dirichlet's theorem on primes in arithmetic progressions tells us that every class $[b] \in (\mathbb{Z}/a\mathbb{Z})^*$ contains some prime $p \equiv b \pmod{a}$.

Moreover, one can check that

$$\chi([-1]) = \begin{cases} 1 & \text{if } D > 0 \\ -1 & \text{if } D < 0 \end{cases}$$