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CHAPTER 1

Introduction and Motivation

Lecture 1
19/04/2017

Our motivating results are the following claims due to Pierre de Fermat. The first
result was announced by Fermat in a letter to Marin Mersenne, dated 25 December
1640. The other results were announced by Fermat fourteen years later, in a letter
to Blaise Pascal.

Fermat did not provide proofs of these results; considerable effort was required by
Leonhard Euler to find the proofs. After first reading about the results, it took
Euler 40 years to finally discover full proofs of Fermat’s claims. Euler also spent
much time thinking about how to generalise these results.

Fermat’s claims are the following:

Theorem 1.1 (Fermat 1640 (conjectured), Euler 1747–1749, and 1752–1755 (pub-
lished)). A prime number p can be written as x2 + y2, with x, y ∈ Z, if and only if
p = 2 or p ≡ 1 (mod 4).

Example 1.2. We have p = 1 000 003 is prime, and p ≡ 3 (mod 4). Therefore p
cannot be written as x2 + y2. With brute force, you can directly check this!

On the other hand, p = 5 617 237 is prime and p = 1 (mod 4). Therefore we should
be able to write p as x2 + y2. Indeed

5 617 237 = 19592 + 13342 .

(Notice Fermat’s claim does not tell us how to find such a representation, only that
it should exist. Constructing solutions is an interesting topic by itself!)

Theorem 1.3 (Fermat 1654 (conjectured), Euler 1772)). Let p be a prime number.
Then we can write

p = x2 + 2y2, with x, y ∈ Z ⇐⇒ p = 2, or p ≡ 1, 3 (mod 8)

p = x2 + 3y2, with x, y ∈ Z ⇐⇒ p = 3, or p ≡ 1 (mod 3) .

Our main question and goal is the following

Problem 1.4. What primes p can be expressed in the form

p = x2 + ny2

for integers x, y? How can we prove these results? How general can we make our
results?

1.1. Overview of main topics and results

Here we give an overview of the main results and topics we will see in this course.
This section is intended to be deliberately vague: during the semester we will explain
the details and theory! We are only trying to chart our course at the moment.
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Quadratic forms and quadratic reciprocity: We begin by discussing Euler’s
proofs of Fermat’s claims. We will try to give proofs that are close in spirit to
Euler’s proofs. There are two main steps: reciprocity and descent which lead us
into more abstract theory.

• Descent is somehow easier for Euler to prove. It tells us about the form of p if p
divides an number of the form x2 +ny2. Generally is leads us to study ‘binary
quadratic forms’ ax2 +bxy+cy2, and to understand when two quadratic forms
are equivalent.
• Reciprocity is harder. It gives us conditions for when p divides a number

of the form x2 + ny2. It leads us to the beautiful result that is quadratic
reciprocity, which relates the existence of solutions of ±p ≡ x2 (mod q) and
±q ≡ y2 (mod p).

Our first big general result is

Theorem 1.5. Let p be prime not dividing D. Then
(
D
p

)
= 1, (meaning D is a

square modulo p) if and only if p is represented by some quadratic form ax2+bxy+cy2

of discriminant D = b2 = 4ac.

Class number 1: When the class number h+(D) (number of non-equivalent qua-
dratic forms of discriminant D) is 1, we can use quadratic reciprocity and the theory
of reduced quadratic forms to derive results. This happens when D = −4,−8,−12,
and so we can recover Fermat’s results. But it happens in other cases too, and we
get new results.

Example 1.6 (D = 8). For p 6= 2 we have

p = x2 − 2y2 if and only if p ≡ 1, 7 (mod 8)

Example 1.7 (D = −11). For p 6= 2, 11, we have

p = x2 + xy + 3y2 if and only if p ≡ p ≡ 1, 3, 4, 5, 9 (mod 11)

Try to think about some of the following examples. We will see how to find conditions
for p during the course of the semester, but you can start to ‘get a feel’ for the results
by playing around yourself!

Exercise 1.8. Similar ‘nice’ criteria exist for the following cases (and many more!)

• x2 + 7y2 where D = −28,
• x2 − 5y2 where D = 20,
• x2 − 13y2 where D = 52,
• x2 + xy + 5y2 where D = −19,
• x2 + xy − y2 where D = 5,
• x2 + xy − 4y2 where D = 13.

Try to discover these conditions in one or two of the cases: which primes p can be
written in these forms? What patterns do these p satisfy?

Perhaps you can write a computer program to investigate, or use a computer algebra
system like Mathematica, Maple or Sage? Or even just a spreadsheet?
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Genus theory, beyond class number 1. When h+(D) > 1, we can’t immediately
get such conditions. All we can say is

Example 1.9 (D = −20). For p 6= 2, 5 we have

p =

{
x2 + 5y2, or

2x2 + 2xy + 3y2

}
if and only if p ≡ 1, 3, 7, 9 (mod 20)

But if these two quadratic forms are in different genera, the congruence condition
‘splits up’ into separate conditions for the two forms. Being in the same genera
means the two forms take the same values modulo D. Since x2 + 5y2 takes only
values 1, 9 (mod 20) and 2x2 + 2xy + 3y2 takes only values 3, 7 (mod 20) we can
argue for the following.

Example 1.10 (D = −20). For p 6= 2, 5 we have

p = x2 + 5y2 if and only if p ≡ 1, 9 (mod 20)

p = 2x2 + 2xy + 3y2 if and only if p ≡ 3, 7 (mod 20)

This allows us to handle many more cases, with only a little more work.

Unfortunately, genus theory is not powerful enough to solve our question completely.
Generally there are many quadratic forms in the same genera, and we can only obtain
partial results like

Example 1.11 (D = −56). For p 6= 2, 7 we have

p =
{
x2 + 14y2, or 2x2 + 7y2

}
if and only if p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

p =
{

3x2 ± 2xy + 5y2
}

if and only if p ≡ 3, 5, 13, 19, 27, 45 (mod 56)

No amount of congruence conditions will ever able to separate the two quadratic
forms x2 + 14y2 and 2x2 + 7y2! We need a genuinely new idea here.

Composition of quadratic forms. In studying examples like the above, involv-
ing criteria which ‘mix’ many different quadratic forms, we encounter a curious
phenomenon.

Example 1.12 (D = −20). For p, q primes we have

p ≡ 3, 7 (mod 20) implies 2p = x2 + 5y2

p, q ≡ 3, 7 (mod 20) implies pq = x2 + 5y2

Example 1.13 (D = −56). Let p, q 6= 2, 7 be primes. While we have no condition
like

p ≡ a1, . . . , ak (mod N) implies p = x2 + 14y2 ,

we can say

p ≡ 3, 5, 13, 19, 27, 45 (mod 56) implies 3p = x2 + 14y2

p, p ≡ 3, 5, 13, 19, 27, 45 (mod 56) implies pq = x2 + 14y2 .



8 1. INTRODUCTION AND MOTIVATION

Where does 2 come from in the first example, and why does instead 3 work in the
second example?

The first example follows immediately from the identity

(2x2 + 2xy + 3y2)(2z2 + 2zw + 3w2) = (2xz + xw + yz + 3yw)2 + 5(xw − yz)2 .

How common are such identities? How can we find them? What is the struc-
ture/deeper reason behind them?

This identity is an example of composition of quadratic forms. Given two binary
quadratic forms of the same discriminant, their product can always be expressed as
a quadratic form of the same discriminant, with a bilinear combination of the two
original pairs of variables.

This even gives the set of binary quadratic forms of discriminant D the structure of
an abelian group! This group structure also gives us an alternative way to charac-
terise the genus of a quadratic form.

Exercise 1.14. Can you find a similar identity for

(3x2 + 2xy + 5y2)(3z2 + 2zw + 5w2) = (· · · )2 + 14(· · · )2 ?

[Binary quadratic forms of discriminant D can be related directly to idea classes in
(orders in) quadratic number fields Q(

√
−D). The composition of binary quadratic

forms is exactly the multiplication in the ideal class group!]

Cubic and biquadratic reciprocity, towards class field theory. Genus theory
does not allow us to separate x2 + 14y2 and 2x2 + 7y2. We can start to see how to
tackle this problem by looking at some of Euler’s other conjectures.

Conjecture 1.15 (Euler). Let p be a prime, then

p = x2 + 27y2 if and only if

{
p ≡ 1 (mod 3) , and

2 ≡ z3 (mod p) has a solution
.

Conjecture 1.16 (Euler). Let p be a prime, then

p = x2 + 64y2 if and only if

{
p ≡ 1 (mod 4) , and

2 ≡ z4 (mod p) has a solution
.

Gauss was able to prove these results using his work on cubic and biquadratic
reciprocity. In much the same way as quadratic reciprocity gives us a solution to
easier cases.

It turns out that the equivalent result for x2 + 14y2 is the following

Example 1.17 (D = −56). Let p 6=, 2, 7 be a prime, then

p = x2 + 14y2 if and only if

{(−14
p

)
= 1, and

(z2 + 1)2 ≡ 8 (mod p) has a solution
.

We will aim to prove Gauss’s results using (relatively) elementary techniques. The
general theory which subsumes Gauss’s results, and the x2 + 14y2 result, is class
field theory and Artin reciprocity
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Fact 1.18. The primes p = x2 + ny2 are determined by the behaviour of p in the
Hilbert class field (or more generally the ring class field) of Z[

√
−n] ⊂ Q(

√
−n).

This leads to the ‘ultimate’ theorem in the study of x2 + ny2

Theorem 1.19. Let n be a (non-square) integer. Then there exists a polynomial
fn(z) of degree h+(−4n) (the class number of discriminant D = −4n), such that

p = x2 + ny2 if and only if

{(−n
p

)
= 1, and

fn(z) ≡ 0 (mod p) has a solution.

Exercise 1.20. Test out the conditions given above for x2 + 14y2, x2 + 27y2 and
x2 + 64y2. A good selection is p = 23, 31, 43, 73, 89, 109, 113, 127, 137, 151, 157.

1.2. Extra topics

In the last few lectures, I would like to discuss some other related topics which study
the question of p = x2 + ny2 or more generally m = ax2 + bxy + cy2, from other
perspectives.

These extra topics are intended to be for fun1 and provide some glimpses into
deeper/more advanced topics. They will NOT be examined.

• Polynomial conditions are not sufficient for ax2 + bxy + cy2, but we can use
modular forms.
• Modular forms and L-functions can count the number of different ways of

writing m = ax2 + bxy + cy2.
• We can study higher arity forms like x2 + y2 + z2 using local-global methods,

and using modular forms.

1.3. Recommended books

The main book for this course is:

• David A Cox. Primes of the form x2 + ny2: Fermat, class field theory, and
complex multiplication. Vol. 34. John Wiley & Sons, 2011

This covers all the main topics in detail, and provides a historical perspective for
the results.

Other useful books which may present the material in different ways (more general,
alternative viewpoints, . . . ) include

• John William Scott Cassels. Rational quadratic forms. Courier Dover Publi-
cations, 2008
• John Horton Conway and Francis YC Fung. The sensual (quadratic) form.

26. MAA, 1997
• Don Bernard Zagier. Zetafunktionen und quadratische Körper: eine Einführung

in die höhere Zahlentheorie. Springer-Verlag, 2013

I will try to indicate the appropriate sections, when we cover the relevant material.

1At least for my fun(!)
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CHAPTER 2

Fermat’s Three Claims

Lecture 2
26/04/2017

We will first try to prove Fermat’s claims, using as elementary methods as possible.
This will lay the foundations for more abstract analysis later.

2.1. Recap of mod n notation

First, let us give a reminder of the meaning of the notation a ≡ b (mod n), and the
properties of the associated ring Z/nZ.

Definition 2.1. We write a ≡ b (mod n) to mean n | a− b. That is n divides a− b.

The operations of + and × are well defined under ≡ (mod n). That is

a ≡ a′ (mod n) and b ≡ b′ (mod n)

means

a± b ≡ a′ ± b′ (mod n)

a× b ≡ a′ × b′ (mod n)

Write [x] := { r ∈ Z | r ≡ x (mod n) } for the equivalence class of integers with the
same remainder as x, modulo n.

Then the set
Z/nZ := { [x] | x ∈ Z } = { [0], [1], . . . , [n− 1] }

forms a commutative ring, with unity [1], under the operations of +,×.

We can find y such that [x]·[y] = [1] (meaning [x] is a unit in Z/nZ, and [x]−1 = [y]),
if and only if gcd(x, n) = 1. Therefore, if n = p prime, the ring Z/pZ is a field and
(Z/pZ)∗ = { [1], [2], . . . , [n− 1] } is a group of order p− 1.

Fact 2.2. It is known that the group of units of a finite field is cyclic. More generally:
any finite subgroup of the group of units of any field is cyclic.

Fact 2.3 (Lagrange). In a finite group G, the order of any element g ∈ G divides
the order of the group. Alternatively, g#G = 1G the identity.

2.2. Fermat’s two squares theorem

Here we present Euler’s elementary proof of Fermat’s two squares theorem.

Theorem 2.4 (Fermat’s two squares). Let p be a prime. Then

p = x2 + y2, with x, y ∈ Z ⇐⇒ p = 2, or p ≡ 1 (mod 4).

Proof. We prove each direction separately.

13
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‘⇒’: Modulo 4, we see the squares are 02, 12, 22, 32 ≡ 0, 1 (mod 4). So if p = x2 + y2,
then we obtain p ≡ 0 + 0, 0 + 1, 1 + 0, 1 + 1 ≡ 0, 1, 2 (mod 4).

Since p is prime, p ≡ 0 (mod 4) is not possible, and p ≡ 2 (mod 4) means p = 2. So
indeed p = x2 + y2 ⇒ p = 2 or p ≡ 1 (mod 4).

‘⇐’: This direction requires two steps.

Descent. If p | x2 + y2, gcd(x, y) = 1, then p is a sum of two squares.

Reciprocity. If p ≡ 1 (mod 4), then p | x2 + y2, gcd(x, y) = 1.

We deal with each in turn. �

Descent. Euler was able to prove Descent first, in 1747, using the classical identity
(x2 + y2)(z2 + w2) = (xz ± yw)2 + (xw ∓ yz)2, and the following lemma.

Lemma 2.5. Suppose N = a2 +b2 is a sum of two relative prime squares gcd(a, b) =
1. If q = x2 + y2 is a prime divisor of N , then N/q is also a sum of two relatively
prime squares.

Proof. We have N = a2 + n2 and q = x2 + y2. So q divides

x2N − a2q = x2(a2 + b2)− a2(x2 + y2) = (xb− ay)(xb+ ay) .

Since q is prime, it divides one of the two factors. We can assume (by changing
a↔ −a) that q | xb− ay, so xb− ay = dq for some d ∈ Z.

Claim: x | a+ dy. Since gcd(x, y) = 1, this is equivalent to x | (a+ dy)y. But

(a+ dy)y = ay + dy2

= xb− dq + dy2

= xb− d(x2 + y2) + dy2

= xb− dx2

is certainly divisible by x.

Set a + dy = cx. Then we obtain a = cx − dy and b = dx + cy. [The b = dx + cy
follows by writing

xb− dx2 = (a+ dy)y

⇒ xb− dx2 = cxy

⇒ b− dx = cy

⇒ b = dx+ cy

using the equation above.]

Now we have

N = a2 + b2 = (cx− dy)2 + (dx+ cy)2

= (x2 + y2)(c2 + d2)

= q(c2 + d2) .

So see that N/q = c2 +d2 is a sum of squares. Moreover, we must have gcd(c, d) = 1,
as gcd(a, b) = 1. �
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How to use this to complete the Descent step? Suppose p is an odd prime dividing
N = a2 + b2, gcd(a, b) = 1.

We can change a → a′ = a + pk, and b → b′ = b + p`, to assume |a|, |b| < 1
2
p,

giving N < 1
2
p2. If gcd(a′, b′) > 1, we can also divide by it. So we can assume

p | N = a2 + b2, with gcd(a, b) = 1 and N ≤ 1
2
p2.

Any prime divisor q 6= p of N is necessarily < p. If it is > p, then N > pq > p2,
contradicting our bound N < 1

2
p2. Moreover, p2 - N , so p only appears with

exponent 1.

Suppose that all such q | N are the sum of two squares. By repeatedly applying
Lemma 2.5, then we conclude p = N/(

∏
qni
i ) is also sum of two squares. Now if p

is not a sum of two squares, we can produce a smaller counterexample q; we can
repeat this indefinitely to obtain an infinite decreasing sequence of prime numbers.
This is a contradiction, and completes the Descent step.

Reciprocity. The reciprocity step caused Euler more problems; he only completed it
in 1749. Euler’s proof used finite differences. We can appeal to our knowledge of
groups, and of the field Z/pZ instead.

If p ≡ 1 (mod 4), then p = 4k + 1 for some positive integer k. Then (Z/pZ)∗ is a
group of order 4k. By Lagrange’s theorem on the orders of elements in groups, we
have

α4k ≡ 1 (mod 4)

for every α ∈ Z/pZ.

View this as saying the polynomial x4k − 1 has 4k roots in Z/pZ. Factor this
polynomial over Z/pZ to get x4k − 1 = (x2k − 1)(x2k + 1). We know a polynomial
f(x) over a field (even integral domain!) has ≤ deg f(x) roots. Since x2k−1 can only
have 2k roots, the other 2k elements must be roots of x2k + 1. Let β = [b] ∈ Z/pZ
be such a root, then b2k + 1 ≡ 0 (mod p), meaning p | b2k + 1. (Can choose b > 0
by adding multiples of p.) So p | (bk)2 + 12, and gcd(bk, 1) = 1. This completes the
Reciprocity step, and so completes the proof of the theorem.

2.3. When an integer N = x2 + y2

Lecture 3
03/05/2017

Without much more work, we can establish a criterion on which integers are the
sum of two squares.

Theorem 2.6. A positive integer N is the sum of two squares if and only if the
exponent of p ≡ 3 (mod 4) in the prime factorisation of N is even.

Proof. There are two directions to the proof. The first follows from what we know
above.

’⇐’: Write N = 2cpe11 · · · p
ek
k q

2f1
1 · · · q

2fl
1 , where each pi ≡ 1 (mod 4), and each qj ≡

3 (mod 4).

We can write pi = a2
i + b2

i from the result above, 2 = 12 + 12 and q
2fj
j = (q

fj
j )2 + 02.

Then repeatedly use the identity

(x2 + y2)(z2 + w)2 = (xz ± yw)2 + (xw ∓ yz)2

to write N as the sum of two squares.
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’⇒’: Now suppose we can write N = x2 + y2, for some x, y ∈ Z. We can factor N
into primes, and write

N = ts2 ,

where t is square-free, i.e. all primes in t appear with exponent 1. We want to show
that if an odd prime p | t, then p ≡ 1 (mod 4).

Suppose gcd(x, y) = d, write x = x0d, y = y0d. Since d2 divides the right hand side
of ts2 = x2 + y2, and t is square free, d2 must divide s2. So write s2 = s2

0d
2. Then

we can divide through by d2 on both sides, we get

ts2 = x2 + y2

⇒ ts2
0d

2 = (x2
0 + y2

0)d2

⇒ s2
0t = x2

0 + y2
0 ,

where gcd(x0, y0) = 1.

Since p | t, we have p | x2
0 +y2

0, gcd(x0, y0) = 1. By the Descent step, this means p is
the sum of two squares, hence p ≡ 1 (mod 4), by Fermat’s two-squares theorem. �

Exercises: Fermat’s p = x2 + 2y2 and p = x2 + 3y2 claims

Euler was able to prove Fermat’s other two claims using similar techniques. The
following exercises guide you through the process.

Exercise 2.7. Find a generalisation of the identity

(x2 + y2)(z2 + w2) = (xz ± yw)2 + (xw ∓ yz)2

to
(x2 + ny2)(z2 + nw2) = (· · · )2 + n(· · · )2 ,

and
(ax2 + cy2)(az2 + cw2) = (· · · )2 + ac(· · · )2 .

Exercise 2.8. i) Formulate a version of Lemma 2.5 when a prime q = x2 + ny2

divides N = a2 + nb2. Show also the statement holds when n = 3 and q = 4.
ii) Suppose a prime p divides N = a2 + nb2, gcd(a, b) = 1. Is it true that

p = x2 + ny2, for some gcd(x, y) = 1? Give a proof or a counterexample.
What does this say about our ability to complete the Descent step in general?

Exercise 2.9 (Primes of the form x2 +2y2). In this exercise you will prove Fermat’s
theorem for primes p = x2 + 2y2.

i) Suppose that prime p = x2 + 2y2. By reducing modulo 8, show that p = 2 or
p ≡ 1, 3 (mod 8).

ii) (Descent for x2 + 2y2) Suppose prime p divides x2 + 2y2, with gcd(x, y) = 1.
Adapt the proof of Theorem 2.4 to show that p = a2 + 2b2. Hint: the previous
exercise might be useful.

iii) (Reciprocity for x2 + 2y2) Suppose prime p ≡ 1, 3 (mod 8). Show that p |
x2 + 2y2, for some gcd(x, y) = 1, by completing the following steps.

i) For p ≡ 1 (mod 8), make use of the identity:

x8k − 1 = (x4k − 1)[(x2k − 1)2 + 2x2k]

ii) For p ≡ 3 (mod 8), argue as follows.
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a) (Optional) Show descent works for x2 − 2y2.
b) Use descent for x2−2y2, to show p does not divide any N = x2−2y2.

Conclude that 2 6≡ a2 (mod p).
c) Show p does not divide any N = x2 + y2.
d) Write p = 2m + 1, and show that no two of the following are

congruence, modulo p

12, 22, . . . ,m2,−12,−22, . . . ,−m2 .

Hence conclude exactly one of −a and a is a square, modulo p. In
particular, show −2 is a square, modulo p.

e) Show that p | x2 + 2y2, with some gcd(x, y) = 1. (Take x = 1.)
f) (Optional/research) Is it possible to more directly show p ≡ 3 (mod 8)

divides some x2 +2y2, gcd(x, y) = 1? For example, by using a poly-
nomial identity like above?

Hence conclude that Fermat’s claim about p = x2 + 3y2 holds.

iv) Find (with proof!) a condition on when a positive integer N can be written in
the form N = x2 + 2y2, x, y ∈ Z.

Exercise 2.10 (Primes of the form x2+3y2). In this exercise you will prove Fermat’s
theorem for primes p = x2 + 3y2.

i) Suppose that prime p = x2 + 3y2. By reducing modulo 3, show that p = 3, or
p ≡ 1 (mod 3).

ii) (Descent for x2 + 3y2) Suppose prime p divides x2 + 3y2, with gcd(x, y) = 1.
Show that p = a2 + 3b2. Warning: the descent step doesn’t work for p = 2, so
if p 6= a2 + 3b2 you need to produce an odd prime q < p not of this form.

iii) (Reciprocity for x2+3y2) Suppose prime p ≡ 1 (mod 3). Show that p | x2+3y2,
for some gcd(x, y) = 1. Hint:

4(x3k − 1) = (xk − 1)[(2xk + 1)2 + 3] .

Hence conclude that Fermat’s theorem claim about p = x2 + 3y2 holds.

iv) Find (with proof!) a condition on when a positive integer N can be written in
the form N = x2 + 3y2, x, y ∈ Z.





CHAPTER 3

Quadratic residues, and quadratic reciprocity

We should try to explain the meaning of ‘reciprocity’ in the Reciprocity steps above.
This leads us to the notion of quadratic residues, and quadratic reciprocity.

3.1. Definition

We introduce the Legendre symbol, and prove some of its properties.

Definition 3.1 (Legendre symbol). Let a ∈ Z be an integer, and p be an odd prime.
Define (

a

p

)
=


0 if p | a
1 if p - a and a ≡ m2 (mod p)

−1 if p - a and a 6≡ m2 (mod p)

.

So
(
a
p

)
is telling us whether or not a is a square, modulo p.

Example 3.2. Since the squares modulo 17 are

(0)2, (±1)2, . . . , (±8)2 ≡ 0, 1, 2, 4, 8, 9, 13, 15, 16 (mod 17) ,

we see (
15

17

)
= 1 since 15 ≡ 72 (mod 17),(

12

17

)
= −1 .

3.2. Alternative criterion

We can give a different description of
(
a
p

)
, but first we need to recall a little group

theory.

Fact 3.3. If p is an (odd) prime, then (Z/pZ)∗ is a cyclic group of order p − 1. It
is generated by some primitive element g with order p− 1.

Lemma 3.4. Let a ∈ Z be an integer, and p be an odd prime. Assume p - a, and
that a ≡ gk (mod p), where g is the primitive element mentioned above. Then a is
a quadratic residue modulo p, i.e.

(
a
p

)
= 1, if and only if k is even.

Proof. We check both directions separately.

‘⇐’: If k = 2` is even, then clearly a ≡ (g`)2 (mod p) is a square.

19
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‘⇒’: Suppose now that a ≡ y2 (mod p). Write y = gm, some m to see gk ≡ a ≡
y2 ≡ g2` (mod p). Multiplying both sides by g−k gives g2`−k ≡ 1 (mod p). In the
group (Z/pZ)∗, g has order p− 1, so p− 1 | 2`− k. But since p is odd, we also have
2 | p− 1. Therefore 2 | 2`− k, which implies 2 | k as required. �

From this lemma, we have the following alternative description of
(
a
p

)
, due to Euler.

Theorem 3.5 (Euler’s criterion). Let a ∈ Z, and let p be an odd prime. Then(
a

p

)
≡ a(p−1)/2 (mod p) .

Proof. We split this into the three possible cases as in the definition of
(
a
p

)
.

Case p | a: If p | a, then both sides reduce to 0 ≡ 0 (mod p).

Case a ≡ � (mod p): Write a ≡ m2 (mod p). Then we compute

a(p−1)/2 ≡ m2(p−1)/2 ≡ mp−1 ≡ 1 ,

by Fermat’s Little Theorem (or Lagrange’s theorem on orders of elements in a
group). So both sides reduce to 1 ≡ 1 (mod p).

Case a 6≡ � (mod p): Since a is not a square modulo p, we can write a ≡ g2k+1 (mod p)
using the previous lemma. Then

a(p−1)/2 ≡ g(2k+1)(p−1)/2 ≡ g(p−1)kg(p−1)/2 ≡ g(p−1)/2 (mod p) .

What is the value of b ≡ g(p−1)/2? Certainly b2 ≡ g(p−1) ≡ 1 (mod p), so b ≡
±1, (mod p). But since p − 1 - 1

2
(p − 1), it cannot be the case that b ≡ 1; the

element g has order p − 1 in the group (Z/pZ)∗. Therefore b ≡ −1 (mod p), which
completes the proof. �

Remark 3.6. Since
(
a
p

)
∈ { −1, 0, 1 }, congruence modulo p ≥ 3 is enough to give

equality in calculations. We will exploit this fact later.

One useful property of the Legendre symbol, is that it is multiplicative in the top
argument.

Proposition 3.7. The Legendre symbol
( ·
p

)
is multiplicative. That is, for a, b ∈ Z,

and p an odd prime, we have (
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. Using Euler’s criterion, we have(
ab

p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(
a

p

)(
b

p

)
(mod p) .

Both sides are in { −1, 0, 1 }, so congruence modulo p implies equality on the level
of integers. �
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3.3. Solution of the Reciprocity step

We can restate the condition p | x2 + ny2, gcd(x, y) = 1 as follows.

Lemma 3.8 (Reciprocity step). Let n be a non-zero integer, and let p be an odd
prime not dividing n. Then

p | x2 + ny2, gcd(x, y) = 1 ⇐⇒
(
−n
p

)
= 1 .

Proof. We prove the two directions separately.

‘⇐’: Suppose
(−n
p

)
= 1, then we can write −n ≡ x2 (mod p), for some x ∈ Z. Now

we obtain x2 + n · 12 ≡ 0 (mod p), so p | x2 + n · 12 and gcd(x, y) = 1.

‘⇒’: Conversely, suppose p | x2 + ny2, some gcd(x, y) = 1. Then I claim gcd(y, p) =
1. Otherwise gcd(y, p) = p, meaning p | y. Then p | x2 + ny2 and p | y implies
p | x, so gcd(x, y) ≥ p, contrary to our assumption. Since gcd(y, p) = 1, we can
find y−1 (mod p). Then x2 + ny2 ≡ 0 (mod p) implies −n ≡ (xy−1)2 (mod p). So(−n
p

)
= 1. (Since we assumed p - n, at the beginning.) �

This means the Reciprocity step of the previous proofs boils down to finding con-
gruence conditions on p, which make

(−n
p

)
= 1. This can be done with quadratic

reciprocity, hence the name!

3.4. Quadratic reciprocity

Lecture 4
10/05/2017

Quadratic reciprocity relates the behaviour of
(p
q

)
and

(q
p

)
for (distinct) odd primes

p, q. Somehow, whether p is a square modulo q is reflected by a related question
about whether q is a square modulo p.

Theorem 3.9 (Quadratic Reciprocity). If p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)(p−1)/2·(q−1)/2 .

We will prove this theorem using a lemma of Eisenstein, giving an alternative cri-
terion for

(p
n

)
. (The traditional way to approach to quadratic reciprocity is by way

of Gauss’s lemma - somehow similar to Eisenstein’s lemma, but less elegant(?) to
state and prove. Eisenstein’s lemma leads to a more geometric argument.)

Lemma 3.10 (Eisensetin). Let p be an odd prime, and let n ∈ Z, with gcd(n, p) = 1.
Then (

n

p

)
= (−1)s ,

where

s =

(p−1)/2∑
k=1

⌊
2kn

p

⌋
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Proof (Sketch): For 1 ≤ k ≤ p−1
2

, define

rk := 2kn− p
⌊

2kn

p

⌋
≡
⌊

2kn

p

⌋
.

This is the least positive residue of 2nk, modulo p.

Then

n(p−1)/2

(p−1)/2∏
k=1

(2k) ≡
(p−1)/2∏
k=1

rk

= (−1)
∑

k rk

(p−1)/2∏
k=1

(−1)rkrk

≡ (−1)
∑

k rk

(p−1)/2∏
k=1

(2k) (mod p) .

Can divide out by
∏(p−1)/2

k=1 (2k) (mod p), to obtain

(−1)
∑

k rk ≡ n(p−1)/2 ≡
(
n

p

)
(mod p) ,

using Euler’s criterion, and hence equality (−1)
∑

k rk =
(
n
p

)
since both sides are in

{ −1, 0, 1 }.

〚The last congruence follows from the claim that

{ (−1)rkrk }

is simply a rearrangement of { 2, 4, . . . , p− 1 }. View (−1)rkrk as the least positive
residue, modulo p. They are all even, and they are distinct because if

(−1)rkrk = (−1)r`r` ,

then divide out by n to obtain

2k ≡ ±2` (mod p)

Since p is odd, this forces 2k ≡ 2` (mod p). Since we have p−1
2

even integers in the
range 2, . . . , p− 1, they must just be a rearrangement of 2, . . . , p− 1.〛 �

From this, we can prove the law of quadratic reciprocity.

Proof of quadratic reciprocity (Sketch). Consider the following p×q rec-
tangle
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6

4

2

1

7

5

3

1 2 3 4 5 6 7 8 9 10 11 12 13
A

W

B

CD Z

Y

Xp/2

q/2

The sum ∑
k

⌊
2qk

p

⌋
counts the number of lattice points with even x-coordinate in ABC. (The black
points.) But since each column x = even has an even number of entries, this is the
same, modulo 2, as the number of lattice points with even x-coordinate in ZY C
(blue). By rotating, this is the same as the number of lattice points with odd
x-coordinate in AXY (red).

So we obtain (
q

p

)
= (−1)µ ,

where µ is the total number of lattice points in AXY .

Similarly,
(p
q

)
= (−1)ν , where ν is the number of lattice points inside AYW .

Finally (
p

q

)(
q

p

)
= (−1)µ+ν = (−1)(p−1)/2·(q−1)/2

since µ+ν is just the total number of lattice points inside AXYW . (Since gcd(p, q) =
1, the line does not pass through any lattice here.) �

In order to evaluate
(
n
p

)
, we also need to know what

(−1
p

)
and

(
2
p

)
are. We can

use Euler’s criterion to evaluate
(−1
p

)
as a function of p, in terms of congruence

conditions on p.

Proposition 3.11 (First supplement to Quadratic Reciprocity). For p an odd
prime, we have (

−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).

Proof. By Euler’s criterion we have(
−1

p

)
≡ (−1)(p−1)/2 (mod p) ,
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but since
(−1
p

)
, (−1)(p−1)/2 ∈ { −1, 0, 1 }, congruence modulo p ≥ 3 implies equality

as integers.

Moreover, when p = 4k + 1, we see (−1)(p−1)/2 = (−1)2k = 1. When p = 4k + 3, we
see (−1)(p−1)/2 = (−1)2k+1 = −1. Any odd prime p must have exactly one of these
two forms. �

We can also evaluate
(

2
p

)
, in terms of congruence conditions on p.

Proposition 3.12 (Second supplement to Quadratic Reciprocity). For p an odd
prime, we have (

2

p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ 1, 7 (mod 8)

−1 if p ≡ 3, 5 (mod 8)

Proof. It is easy to check that (−1)(p2−1)/8 evaluates as indicated for the different
cases modulo 8. We therefore show how

(
2
p

)
evaluates to this.

We use Eisenstein’s lemma. Note that

s =

(p−1)/2∑
k=1

⌊
4k

p

⌋
= #{ k ∈ Z | p/4 < k ≤ p/2 } =

⌊p
2

⌋
−
⌊p

4

⌋
,

since each summand is ≤ 1.

Then just substitute p = 8m+ 1, 8m+ 3, 8m+ 5, 8m+ 7 respectively.

p = 8m+ 1: s = b4m+ 1/2c − b2m+ 1/4c = 2m 

(
2

p

)
= 10 = 1

p = 8m+ 3: s = b4m+ 3/2c − b2m+ 3/4c = 2m+ 1 

(
2

p

)
= (−1)1 = −1 ,

similarly for p = 8m+ 5, 8m+ 7. �

With quadratic reciprocity, and these two supplements, we can describe when
(
a
p

)
=

1, in terms of congruence conditions on p. Factor a = ±2e2
∏
qeii , and use this to

write (
a

p

)
=

(
±1

p

)(
2

p

)e2∏
i

(
qi

p

)ei
.

Use quadratic reciprocity to ‘flip’
(qi
p

)
to (−1)(p−1)/2

( p
qi

)
=
(−1
p

)( p
qi

)
or to

( p
qi

)
, as

appropriate. Each
( p
qi

)
± is described by a congruence modulo qi. Moreover

(−1
p

)
=

±1 is described by a congruence modulo 4, and
(

2
p

)
= ±1 is described by a congruence

modulo 8. Select all the possible combinations
( p
qi

)
= ±1,

(−1
p

)
= ±,

(
2
p

)
= ±1 which

give result
(
a
p

)
= 1, and find the congruence for each case. Overall, we see that(

a
p

)
= 1 can be described by a congruence modulo 8q1 · · · qn ≤ 4a, at most.

Example 3.13 (Reciprocity for x2 +3y2). We can use quadratic reciprocity to show
p ≡ 1 (mod 3) implies p | x2 + 3y2, for some gcd(x, y). This gives a different proof
of the Reciprocity step for x3 + 3y2.
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By Lemma 3.8, we know that for p odd, p - 3, we have

p | x2 + 3y2, gcd(x, y) ⇐⇒
(
−3

p

)
= 1 .

By quadratic reciprocity we know(
3

p

)(
p

3

)
= (−1)(p−1)/2·(3−1)/2 = (−1)(p−1)/2 =

(
−1

p

)
.

By rearranging (and realising
(
a
p

)−1
=
(
a
p

)
, for a - p, since

(
a
p

)
= ±1), we obtain(

−3

p

)
=

(
p

3

)
.

Now the non-zero squares modulo 3 are exactly 12, 22 ≡ 1 (mod 3). So
(−3
p

)
=

1 ⇐⇒
(p

3

)
= 1 ⇐⇒ p ≡ 1 (mod 3).

We now have some sense of why Euler had so much difficulty in proving (the Reci-
procity steps for) Fermat’s x2 + 2y2 and x2 + 3y2 claims. He was in the process of
discovering/working out quadratic reciprocity!

Exercises

Exercise 3.14. Use (the supplements to) Quadratic Reciprocity to find congruence
conditions on p such that

(−2
p

)
= 1. This gives an alternate proof of the Reciprocity

step for p | x2 + 2y2. How does this compare with Exercise 2.9?

Exercise 3.15. Find congruence conditions on p such that
(
a
p

)
= 1 for

i) a = ±5,
ii) a = ±7,

iii) a = ±6,
iv) a = ±10,
v) a = ±21.

Hence state the corresponding Reciprocity steps for these x2 + ny2, in these cases.

Exercise 3.16. (Easy cases of Dirichlet’s theorem on primes in arithmetic progres-
sions)

i) By directly imitating Euclid’s classical proof that there are infinitely many
primes, show that there are infinite many primes p ≡ 3 (mod 4). Hint: consider
Nk = 22p1p2 . . . pk − 1, where p1 = 3, p2 = 7, . . . are the primes of the form
4n+ 3.

ii) By using Lemma 3.8, with n = 1, adapt the above proof, to show there are
infinitely many primes p ≡ 1 (mod 4).

iii) Show that there are infinitely many primes p ≡ 1 (mod 3) and infinitely many
primes p ≡ 2 (mod 3).

Exercise 3.17 (Primes of the form x2 − 2y2).

i) Show directly that the descent step holds for x2 − 2y2.
ii) Use quadratic reciprocity to determine when p | x2 − 2y2.
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iii) Give a condition on when a prime p = x2 − 2y2.

Exercise 3.18. In this exercise you will evaluate
(

2
p

)
in a different way, using Euler’s

criterion.

Consider (Z/pZ), and suppose we extend it to F = (Z/pZ)[ζ8] which includes (the
image of) ζ8 = e2πi/8, a primitive 8-th root of 1. Then any element x ∈ F can be
written

x ≡
7∑
i=0

aiζ
i
8 (mod p) ,

with addition and multiplication given in the ‘natural ways’ using the rule ζ8
8 = 1.

(Similar to C = R[i], where we write element x ∈ R[i] as x = a + bi, and use the
rule i2 = 1.)

i) Write τ = ζ8 + ζ−1
8 = ζ8 + ζ7

8 . Show that τ 2 = 2, hence show

τ p ≡
(

2

p

)
τ (mod p) .

ii) Using the binomial theorem, show that

τ p ≡ ζp8 + ζ−p8 (mod p)

iii) For p ≡ ±1,±3 (mod 8), evaluate τ p, and check the result can be written as

τ p = (−1)(p2−1)/8τ (mod p)

iv) Conclude that (
2

p

)
= (−1)(p2−1)/8 .



CHAPTER 4

Quadratic forms, definitions and properties

Lecture 5
17/05/2017

Using quadratic reciprocity, we have a systematic way of completing the Reciprocity
set in Euler’s proofs. However, the descent step fails in general.

Example 4.1. We have that 2, 3 | 12 + 5 × 12, yet we cannot write 2 = x2 + 5y2,
and we cannot write 3 = x2 + 5y2. (You should have discovered something like this
in Exercise 2.8 ii).) However, we can say

p | x2 + 5y2 ⇒ p = x2 + 5y2 or p = 2x2 + 2xy + 3y2 .

We need a more systematic method of studying the Descent step, and ‘classifying’
the failures like above. For that purpose, we introduce and study quadratic forms.

4.1. General definitions around quadratic forms

We try to state the definitions rather generally, at first. But we will focus mainly
on the case of ‘integral binary quadratic forms’, so think about n = 2 and R = Z if
you prefer.

Let R be some ring (with unity 1 ∈ R) inside some field K.

Definition 4.2 (Quadratic Form). A quadratic form over R is a homogeneous
polynomial

f(x1, . . . , xn) :=
∑

1≤i≤j≤n

ri,jxixj

= r1,1x
2
1 + r1,2x1x2 + · · ·

of degree 2, with coefficients ri,j ∈ R.

• If f(x1, . . . , xn) is a quadratic form in n variables, we call it an n-ary quadratic
form (binary, ternary, quaternary, . . . )

Representations: Given a quadratic form f(x1, . . . , xn) over some ring R, we can
substitute values ai ∈ R to evaluate f(a1, . . . , an).

• Fix some r ∈ R. If there exists values a = (a1, . . . , an) ∈ Rn, such that
f(a1, . . . , an) = r, we say f represents r.

Matrix: Given a quadratic form f(x) = f

(( x1
...
xn

))
:= f(x1, . . . , xn) =

∑
1≤i≤j≤n fi,jxixj,

we can write f(x) as a matrix equation

f(x) = x>

 f1,1 · · · 1
2
fi,j

...
. . .

...
1
2
fi,j · · · fn,n


︸ ︷︷ ︸

=: F

x .

27
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(View x as a column vector!) We call F the (Gram) matrix of the form f .

Notice that the matrix may contain coefficients in 1
2
R, not just R. (We assume

charK 6= 2, for simplicity!)

Now from F , we can make the following definitions

• We call det(F ), the determinant det(f) of f .
• If f(x, y) = ax2 + bxy + cy2 is a binary quadratic form, with

F =

(
a b/2
b/2 c

)
,

then det(M) = ac− 1
4
b2. The discriminant of f is −4 det(M) = b2 − 4ac.

• If det(M) 6= 0, we call f regular, non-singular, or non-degenerate.

4.2. Defintions around integral quadratic forms

We focus mainly on the case R = Z, and within this on binary quadratic forms, at
least in the first part of this course. Later we may look at quadratic forms in more
variables: ternary quadratic forms, 4-ary quadratic forms, . . .

• We call quadratic forms over R = Z integral.
• If 1

2
fi,j ∈ Z, so the ‘off-diagonal’ terms fi,jxixj have ‘even’ coefficient, and the

matrix has entries in Z, then we call the form classically integral.

Remark 4.3. This distinction is the source of much debate and consternation. The
notion of classically integral does back to Gauss, who assumed the ‘off-diagonal’
coefficients were even. For qualitative results, this distinction is not so important
because we have the following result

f integral ⇒ 2f classically integral

Over R = Z, we can impose extra conditions involving gcd

• If gcd(ri,j) = 1, we say f is primitive.
• If r ∈ Z, and there exists a ∈ Zn such that f(a) = r, and gcd(a) = 1, we say
f represents a properly.

We can look at all the (sign of) values f attains.

• If f(a) ≥ 0, for all a ∈ Zn, we say f is positive semi-definite.
• If f(a) > 0, for all a 6= 0 ∈ Zn, we say f is positive definite.
• Similarly, for negative (semi-)definite.
• If f(a) > 0 for some a 6= 0 ∈ Zn, and f(a′) < 0 for some a′ 6= 0 ∈ Zn, we say
f is indefinite.

For integral binary quadratic forms, we have the following result connecting defi-
niteness and the discriminant.

Proposition 4.4. Suppose f(x, y) = ax2 + bxy + cy2 is a binary quadratic form,
with discriminant D = b2 − 4ac.

i) Then f is indefinite iff D > 0.
ii) Then f is positive (respectively negative) definite iff D < 0 and a > 0 (respec-

tively a < 0).

Proof. Exercise. Hint: complete the square. �
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4.3. Equivalence of quadratic forms

As with (almost) all mathematical objects, we want to notion that two such qua-
dratic forms are ‘equivalent’. What should equivalence look like here? The most
obvious thing we can do is a change of variables xi 7→ Fi(x1, . . . , xn). The result of
this should be another quadratic form with R coefficients, so the function Fi should
be linear, i.e. xi 7→

∑
j bi,jxj, with bi,j ∈ R. So we can represent this change of

variables by a matrix B ∈ Mn×n(R), and x 7→ Bx. Moreover, we want to be able
to undo this change of variables (to get an equivalence relation!), so B should be
invertible, i.e. B ∈ GLn(R).

Definition 4.5 (Equivalence). Let f, g be two n-ary quadratic forms over R. Sup-
pose that there is some matrix B ∈ GLn(R), such that f(Bx) = g(x). Then we say
f is (GLn(R)-)equivalent or just R-equivalent to g.

On the level of matrices, we have that

f(Bx) = (Bx)>F (Bx) = x>(B>FB)x ,

so the matrix G of g is related to the matrix F of f by G = B>FB.

4.3.1. Examples of equivalence. The qualitative behaviour of quadratic forms,
under GLn(R)-equivalence depends very strongly on the ring R

Example 4.6 (Over R). Every n-ary quadratic form over R is equivalence to a
unique form

x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

r+s .

This is (basically) Sylvester’s law of inertia in linear algebra. It comes from repeat-
edly completing the square.

For example, consider

x2 + xy + 2y2 + 2xz + 3yz − z2 .

We complete the square in x, to obtain

= (x+ 1
2
y + z)2 + 7

4
y2 + 3yz − 2z2

= (x+
1

2
y + z)2 + (

√
7

2
y + 2√

7
z)2 − (3

√
2√
7
z)2

 X2
0 +X2

1 −X2
3

using the change of variablesX0

X1

X2

 =

1 1
2

1

0
√

7
2

2√
7

0 0 3
√

2√
7


xy
z

 .

By construction, this change of variables matrix is upper triangular with non-zero
diagonal entries. So it is invertible. This shows the forms are equivalent. (More
precisely, this shows that X2

1 + X2
2 − X2

3 is GL3(R)-equivalent to x2 + xy + 2y2 +
2xz + 3yz − z2.

Example 4.7 (Over C). Over C, every n-ary quadratic form is equivalent to

x2
1 + x2

2 + · · ·+ x2
r ,

since we can change −x2
k = (ixk)

2, to obtain a plus sign.
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So the situation of quadratic forms over R, and over C is (in some sense) completely
understood. The situation over Z is much more interesting!Lecture 6

24/05/2017
Example 4.8 (Over Z). We cannot always convert to ‘diagonal’ form, so it becomes
more difficult to determine when two quadratic forms are equivalent.

• Consider the following.

x2 + 5y2 and 9x2 + 32xy + 29y2

are equivalent via B =
(

2, 3
1 2

)
. But x2 + 5y2 and 2x2 + 2xy + 3y2 are not

equivalent. How can we see this? Suppose

f(( a bc d ) ( xy )) = 2x2 + 2xy + 3y2 .

Expand out and gather coefficients to get

(a2 + 5c2)x+ (2ab+ 10cd)xy + (b2 + 5d2) = 2x2 + 2xy + 3y2

We have to find integers a, b, c, d such that (in particular) a2 + 5c2 = 2. But
this is not possible.
• Consider the following.

f(x, y) = x2 − 3y2 and g(x, y) = −x2 + 3y2

are not equivalent. Suppose

f (( a bc d ) ( xy )) = g(x, y) ,

then we obtain

(a2 − 3c2)x2 + (2ab− 6cb)xy + (b2 − 3d2)y2 = −x2 + 3y2 .

So we need a2− 3c2 = −1, with a, c ∈ Z. It turns out that there is no solution
to this, but this is not so obvious. We can see this by reducing modulo 3, giving
a2 ≡ −1 ≡ 2 (mod 3). But the squares modulo 3 are 02, (±1)2 ≡ 0, 1 (mod 3).

4.3.2. Properties of GLn(R)-equivalence. Some properties of GLn(R)-equivalence
can help answer questions about when two quadratic forms are equivalent. Here we
give some of the properties. The proofs are (relatively straightforward) exercises.

Proposition 4.9. GLn(R)-equivalence is an equivalence relation on n-ary quadratic
forms over R.

• The form f is equivalent to f ,
• If f is equivalent to g, then g is equivalent to f , and
• If f equivalent to g, and g equivalent to h, then f equivalent to h.

Proposition 4.10. Suppose f and g are GLn(R)-equivalent quadratic forms.

• Then det(f) and det(g) differ by a square:

det(f) = λ2 det(g) ,

for some λ 6= 0 ∈ R∗.
• If R = Z, then

det(f) = det(g) ,

and so GLn(Z)-equivalent integral binary quadratic forms have the same dis-
criminant.
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Proposition 4.11. Suppose f and g are GLn(R)-equivalent quadratic forms.

• Then f represents r ∈ R if and only if g represents r ∈ R.
• If R = Z, then f represents n ∈ Z properly, if and only if g represents n ∈ Z

properly.

Proposition 4.12. Suppose f and g are GLn(Z)-equivalent quadratic forms.

• Then f is primitive if and only if g is primitive, and
• f is classically integral if and only if g is classically integral.

Proposition 4.13. Suppose f and g are integral n-ary quadratic forms. Then 2f
and 2g are classically integral, and

f GLn(Z)-equivalent to g if and only if 2f GLn(Z)-equivalent to 2g.

4.3.3. Proper equivalence for integral quadratic forms. When R = Z, we
can further refine the notion of equivalence. Any matrix in GLn(Z) has determinant
+1 or −1. These lead to the notions of proper and improper equivalence.

Definition 4.14. If there exists B ∈ SLn(Z) (with det(B) = 1 > 0) and f(Bx) =
g(x), we say f and g are properly equivalent. Otherwise, they are improperly equiv-
alent.

Example 4.15. The forms f(x, y) = 3x2 + 2xy+ 5y2 and g(x, y) = 3x2− 2xy+ 5y2

improperly equivalent viaB = ( −1 0
0 1 ). Are they properly equivalent? This is perhaps

a more subtle question, and we will develop better techniques for dealing with it
shortly. Nevertheless: expand out

f(( a bc d ) x) = 3x2 − 2xy + 5y2

The x2 coefficient requires 3a2 +2ac+5c2 = 3. The only solutions are a = ±1, c = 0.
Similarly, the y2 coefficient requires 3b2 + 2bd+ 5d2 = 5, and the only solutions are
b = 0, d = ±1.

Only 2 of these 4 choices give SL2(Z) matrices, namely

±
(

1 0
0 1

)
.

Both of which send f to f . So f and g are not properly equivalent.

Remark 4.16. Since SLn(Z) < GLn(Z) is a subgroup, SLn(Z)-equivalence is also
an equivalence relation. The properties above all have corresponding versions for
SLn(Z)-equivalence.

Remark 4.17. Proper equivalence is the better notion of equivalence when we study
integral quadratic forms. (It has better properties in terms of composition, and
connections ot ideals in quadratic number fields.) If we speak of equivalent integral
quadratic forms, we always mean proper equivalence, unless otherwise specified.

Proposition 4.18. Suppose f, g, h are integral quadratic forms. If f and g are
improperly equivalent, and g and h are improperly equivalent. Then f and h are
properly equivalent.
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4.4. Solution to the Descent step

With our knowledge of quadratic forms, we can now give a ‘solution’ to the descent
step of the proof in general. This is a solution, in so much as it gives us a result in
all cases, but since we have generally p | x2 + ny2 does not imply p is of the form
x2 + ny2 (e.g. p = 3 | 6 = 12 + 5 · 12, but p 6= x2 + 5y2), we still do not solve the our
problem completely. From now on we restrict to integral binary quadratic forms.

4.4.1. Proper equivalence and proper representation. There is a close
relationship between proper representation, and proper equivalence of binary qua-
dratic forms.

Lemma 4.19. A binary quadratic form ax2+bxy+cy2 properly represents an integer
m if and only if f(x, y) is properly equivalence to the form mx2 + b′xy + c′y2, for
some b′, c′ ∈ Z.

Proof. We show the two directions separately.

‘⇐’: Certainly mx2 + b′xy + c′y2 properly represents m by taking (x, y) = (1, 0).

’⇒’. Now, let f(p, q) = m be a proper representation of m. Since gcd(p, q) = 1, we
can find (by the Euclidean algorithm/Bezout) r, s so that ps− qr = 1. THen

f (( p rq s ) · ( xy )) = (ap2 + bpq + cq2)x2 + (2apr + bqr + bps+ 2cqs)xy

+ (ar2 + brs+ cs2)y2

= f(p, q)︸ ︷︷ ︸
=m

x2 + b′xy + c′y2 .

�

4.4.2. Representation by a binary quadratic form of discriminant D.
We finally now can finally give a condition on which determines which primes certain
integral binary quadratic forms represent.

Lemma 4.20. Let D be a discriminant, and m an odd integer relatively prime to D.
Then m is properly represented by a primitive binary quadratic form of discriminant
D if and only if D is a square modulo m.

Proof. We show the two directions separately.

‘⇒’. Let m = f(x, y) be a proper representation of m. Then by Lemma 4.19, we can
assume f(x, y) = mx2 + bxy + cy2. Then D = b2 − 4mc, and so D ≡ b2 (mod m).

‘⇐’: Suppose D ≡ b2 (mod m). Since m is odd, one can assume D and b have the
same parity: change b 7→ b+m if necessary.

Notice that the discriminant of a quadratic form necessarily satisfiesD ≡ 0, 1 (mod 4),
asD = b2−4ac ≡ b2 ≡ 0, 1 (mod 4). We therefore haveD ≡ b2 (mod 4m). (We must
have D ≡ b2 + km (mod 4m), but reducing modulo 4 shows that k ≡ 0 (mod 4).)

So write D = b2−4mc, for some c. Then mx2 +bxy+cy2 properly represents m, and
has discriminant D. Moreover, it is primitive, since m was assumed to be relatively
prime to D. �
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And as a corollary, if we restrict to primes, we obtain.

Corollary 4.21 (Descent step). Let D be a discriminant, and let p be an odd prime
not dividing D. Then (

D

p

)
= 1

if and only if p is represented by a primitive binary quadratic form of discriminant
D.

Proof. Modulo an odd prime p, we know D if a square if and only if
(
D
p

)
= 1.

Any representation of a prime is proper, otherwise gcd(x, y) = q > 1, meaning
q2 | f(x, y) = p. �

For this corollary to be useful for explicit results, we need more knowledge of the
(equivalence classes of) primitive integral binary quadratic forms of discriminant D.
We study this problem in more detail next: we show that the number of equiva-
lence classes is finite, and give procedures to list representatives of these equivalence
classes.

Example 4.22. In the next chapter, we will show that x2 + 3y2 is the only bi-
nary quadratic form of discriminant D = −12 up to (proper) equivalence. We can
therefore easily prove Fermat’s x2 + 3y2 theorem as follows.

From a computation in Example 3.13, using Quadratic reciprocity Theorem 3.9, we
established that for a prime p(

−3

p

)
= 1 ⇐⇒ p ≡ 1 (mod 3) .

From Corollary 4.21, we know that for an odd prime p - D = −12(
−12

p

)
= 1 ⇐⇒

p is represented by a primitive binary

quadratic form of discriminant D = −12

But
(−12
p

)
=
(

2
p

)2(−3
p

)
=
(−3
p

)
. And since x2 + 3y2 is the only primitive binary

quadratic form of discriminant D = −12, we see p is represented by some form if
and only if it is represented by x2 + 3y2.

Thus for p 6= 2, 3 we have

p ≡ 1 (mod 3)
QR⇐⇒

(
−3

p

)
= 1

Cor⇐⇒ p = x2 + 3y2 .

Exercises

Exercise 4.23. Let f(x1, . . . , xn) be a quadratic form (with coefficients over some
ring R ⊃ Z). Show that

f is integral implies 2f is classically integral.

Exercise 4.24. Suppose that f(x1, . . . , xn) is a non-primitive integral quadratic
form. Show that f(x1, . . . , xn) can represent at most one prime.



34 4. QUADRATIC FORMS, DEFINITIONS AND PROPERTIES

Exercise 4.25. Suppose f(x, y) = ax2 + bxy + cy2 is an integral binary quadratic
form, with discriminant D = b2 − 4ac.

i) Show that f is indefinite if D > 0.
ii) Show that f is positive (respectively negative) definite if D < 0 and a > 0

(respectively a < 0).
iii) What happens when D = 0? What happens if D > 0 is a perfect square?

Hint: Complete the square!

Exercise 4.26. Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form, of
discriminant D = b2 − 4ac. Show that D ≡ 0, 1 (mod 4), and that every such
D occurs.

Exercise 4.27. Show that R-equivalence is an equivalence relation on n-ary qua-
dratic forms over R. Show

• The form f is equivalent to f ,
• If f is equivalent to g, then g is equivalent to f , and
• If f equivalent to g, and g equivalent to h, then f equivalent to h.

Check also for SLn(Z)-equivalence, when R = Z.

Exercise 4.28. Suppose f and g are GLn(R)-equivalent quadratic forms. Show

• det(f) and det(g) differ by a square

det(f) = λ2 det(g) ,

for some λ 6= 0 ∈ R∗. How does λ arise from the equivalence of f to g?
• For R = Z, conclude det(f) = det(g), and explain why GLn(Z)-equivalent

integral binary quadratic forms have the same discriminant.

Exercise 4.29. Suppose f and g are GLn(R)-equivalent quadratic forms. Show

• f represents r ∈ R if and only if g represents r ∈ R.
• For R = Z, f represents n ∈ Z properly, if and only if g represents n ∈ Z

properly. Check also for SLn(Z)-equivalence.

Use this to show that

x2 + 14y2 , 2x2 + 7y2 and 3x2 + 2xy + 5y2

are not GLn(Z)-equivalent.

Exercise 4.30. Suppose f and g are integral n-ary quadratic forms. Then 2f and
2g are classically integral. Show that

f is GLn(Z)-equivalent to g if and only if 2f is GLn(Z)-equivalent to 2g.

Check also for SLn(Z)-equivalence.

Exercise 4.31. Suppose f, g, h are integral quadratic forms. Suppose f and g are
improperly equivalent, and g and h are improperly equivalent. Show that f and h
are properly equivalent.
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The class number, and reduction of binary quadratic forms

Lecture 7
31/05/2017

It is a remarkable fact that for a fixed number of variables n, and a fixed determi-
nant d, the number of equivalence classes of equivalent integral n-ary quadratic form
of determinant d is finite! (This holds for proper equivalence, or improper equiva-
lence. And for integral or classically integral. And for primitive, or not-necessarily
primitive.)

Definition 5.1. Write h(D) for the number of proper equivalence classes of positive
definite primitive integral binary quadratic forms of discriminant D < 0.

Write h+(D) for the number of proper equivalence classes of indefinite primitive
integral binary quadratic forms of discriminant D > 0.

Remark 5.2. The plus in the notation refers to the fact that we (sort of have) a
‘narrower’ notion of equivalence in the indefinite case: we do not identify −ax2 +
bxy − cy2 and ax2 + bxy + cy2 unless they are properly equivalent. Whereas in the
positive definite case, we always ignore the negative-definite forms (so we can think
of identifying the positive definite form ax2 + bxy + cy2 and negative definite forms
−ax2 + bxy − cy2.

In the indefinite case, we can write h(D) to mean always identify these forms.
Sometimes we have h(D) = h+(D) and sometimes only h+(D) = 2h(D).

Whether we have = 1× or = 2× depends on whether a solution to the equation
x2 − ny2 = −4 exists. If we focus on the case D = −4n, then this is equivalent to
whether a solution to x2 − ny2 = −1 exists. If such a solution exists, then we have
= 1×, otherwise we have = 2×.

The existence of a solution to x2 − ny2 = −1 means that the fundamental unit of
the order Z[

√
n] ⊂ OK has negative norm. This is only the tip of the connection

between quadratic forms and quadratic number fields. (See handout 2)

Example 5.3. We know that x2 − 3y2 and −x2 + 3y2 are not equivalent, and we
proved this by seeing that x2 − 3y2 = −1 has no solution. But since x2 − 5y2 = −1
has solution (x, y) = (2, 1), we can write(

2 −5
1 −2

)
· (x2 − 5y2) = −x2 + 5y2 .

This can be generalised.

We will prove this finiteness in the case of n = 2 by means of reduced forms. We will
give a procedure which lists a representative of each proper-equivalence class. The
case of positive-definite forms is qualitatively different from the case of indefinite
forms, so we treat them separately. We also say perhaps a few words about the
general case of n-ary forms.

35
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5.1. Reduction of positive definite forms

We introduce a notion of a positive-definite binary quadratic form being reduced.
It may be convenient to write (a, b, c) = ax2 + bxy + cy2. We shall also write B ◦ f
to mean the action of matrix B on form f , i.e. (B ◦ f)(x) = f(Bx).

Definition 5.4. Let f(x, y) = ax2+bxy+cy2 be a positive-definite binary quadratic
form of discriminant D < 0. We say that f(x, y) is reduced if

• |b| ≤ a ≤ c, and
• if |b| = a then b ≥ 0, and
• if a = c, then b ≥ 0.

The claim now is that every positive-definite binary quadratic form of fixed discrim-
inant D < 0 is properly equivalent to a unique reduced form.

Theorem 5.5. In every proper equivalence class of positive-definite binary quadratic
forms of fixed discriminant D < 0, there is a unique reduced form.

Proof. Firstly we show there is a reduced form, secondly we show it is unique.

Existence: Since the form is positive-definite, we have a > 0. By the well-ordering
principle, each proper equivalence class of binary quadratic forms contains a form
with minimal a.

Suppose ax2 + bxy + cy2 is such a form. We have a ≤ c, otherwise S = ( 0 1
−1 0 )

sending x 7→ −y and y 7→ x changes ax2 + bxy + cy2 into cx2 − bxy + ay2, with
smaller x2-coefficient.

The matrix T k = ( 1 k
0 1 ) sends x 7→ x+ky, and y 7→ y. So transforms ax2 + bxy+ cy2

into ax2 + (2ak + b)xy + (ak2 + bk + c)y2. This lets us put the xy-coefficient into
the range (−a, a], giving −a < b ≤ a, so |b| ≤ a.

We need to check whether the edge cases as satisfied. By construction, if |b| = a,
then b = a > 0. Moreover, if a = c, we can ensure b ≥ 0 by transforming with ( 0 1

−1 0 )
sending ax2 + bxy + cy2 to cx2 − bxy + ay2.

〚We can obtain an explicit algorithm for reduction, as follows. If c < a, use S to get
smaller a coefficient. Then use T k to put −a < b ≤ a. By keeping track of which
matrices T k, S we use, and in which order, we can give an explicit SL2(Z)-matrix

which shows f is equivalent to the reduced form f̃ . If you know about modular forms,
this reduction procedure is closely connected with finding fundamental domain for
H/ SL2(Z). 〛

Uniqueness: Now we need to show that if two reduced forms ax2 + bxy + cy2 and
a′x2 + b′xy + c′y2 are equivalent, then a′ = a, b′ = b, and c′ = c.

Firstly we show that a is minimal for a reduce form. Acting by ( p qr s ) ∈ SL2(Z) sends
a 7→ ap2 + bpr + cr2. Since |b| ≤ a ≤ c, we can write

ap2 + bpr + cr2 = ap2
(
1 + b

a︸︷︷︸
−1<

b
c
≤1

r
p

)
+ cr2 = ap2 + cr2

(
1 + b

c︸︷︷︸
−1<

b
c
≤1

p
r

)
,
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Moreover, we must have gcd(p, r) = 1, to get det = 1. So p = 0 implies r = ±1, and
r = 0 implies p = ±1.

If p = 0, we get a 7→ c ≥ a.

If r = 0, we get a 7→ a ≥ a.

So we can assume p, r 6= 0. Then one of r
p

and p
r

is in (−1, 1]. If the former, we get

a 7→ ap2(1 +
b

a

r

p︸︷︷︸
∈(−1,1]

) + cr2 > ap20 + cr2 ≥ a.12 = a ,

if the latter, we get

a 7→ ap2 + cr2(1 +
b

c

p

r︸︷︷︸
∈(−1,1]

) > ap2 + cr20 ≥ a.12 = a .

This shows that the x2-coefficient is minimal for a reduced form. So a = a′.

Which forms are equivalent to ax2 + bxy + cy2, and have x2-coefficient also a? We
read off the possibilities from the inequalities above:

• (p, r) = (0,±1) with a = c.
• Or (p, r) = (±1, 0)

This gives matrices (
0 ±1
±1 k

)
,

(
±1 k
0 ±1

)
Since −I2 acts as the identity on f(x, y), i.e. f(−x,−y) = f(x, y), we can assume
the signs are +. The matrix ( 0 1

1 k ) is only a valid possibility if a = c. But if a = c,
then its affect on b is exactly the same as for the other matrix. So without loss of
generality, the only transformation we need to consider is(

0 ±1
±1 k

)
sending x 7→ x+ ky, and y 7→ y and b 7→ b+ 2ak. To get another reduced form, we
must take k = 0, else b + 2ak is outside the required range. So we have only the
identity matrix. Hence b = b′, and c = c′. �

From this, we obtain a bound on x2-coefficient in terms of the discriminant D < 0,
for reduced positive-definite binary quadratic forms.

Corollary 5.6. Let f(x, y) = ax2 + bxy + cy2 be a reduced positive-definite binary
quadratic form of discriminant D < 0. Then

a ≤
√
−D

3

Proof. Since f(x, y) is reduced, we know c ≥ a ≥ |b|. So a2 ≥ b2. Substituting
this into the formula for the discriminant, we find

−D = 4ac− b2 ≥ 4a2 − a2 = 3a2 ,

giving the required bound. �
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From this, we obtain the easy corollary that there are only a finite number of proper
equivalence classes of positive-definite binary quadratic forms of fixed discriminant
D < 0.

Corollary 5.7 (Finiteness of the ‘class number’). The number h(D) of proper equiv-
alence classes of positive-definite binary quadratic forms of fixed discriminant D < 0
is finite.

Proof. Each proper equivalence class contains a unique reduced form ax2 + bxy+
cy2, with |b| ≤ a ≤ c. If D is fixed, we can compute c = b2−D

4a
in terms of a and b.

Moreover, the number of possible a, b is finite, using the bound |b| ≤ a ≤
√
−D/3

from the previous corollary. Hence the number of possible reduce forms of discrim-
inant D is finite, and so is the number of proper equivalence classes. �

We can now easily list a representative of the proper equivalence class of positive-
definite binary quadratic forms of discriminant D < 0. Since primitive forms are
only equivalent to primitive forms, we can restrict to equivalence classes of primitive
positive-definite binary quadratic forms by throwing away any non-primitive ones
from our final result.

Example 5.8. List the primitive positive-definite binary quadratic forms of dis-
criminant D = −12.

We have the bound 1 ≤ a ≤
√
−D/3 = 2. We list all |b| ≤ a, for a = 1, 2. Then

compute c = b2+12
4a

to get the following table.

a b c Integral? Reduced? Primitive?

1 −1 13
4

1 0 3 X X X

1 1 13
4

2 −2 2 X

2 −1 13
8

2 0 3
2

2 1 13
8

2 2 2 X X

So there are two classes of positive-definite binary quadratic forms of discriminant
D = −12.

x2 + 3y2 , and 2x2 + 2xy + 2y2

Only the first class is primitive, so h(−12) = 1.

A calculator is available online at http://www.numbertheory.org/php/classnoneg.
html to compute the class number, and reduced equivalence classes of (primitive)
positive-definite binary quadratic forms of discriminant D < 0.

http://www.numbertheory.org/php/classnoneg.html
http://www.numbertheory.org/php/classnoneg.html
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5.2. Reduction of indefinite forms

With indefinite forms, the notion of a reduced form is more subtle. We have a
definition of reduced, but it turns out that there is not (necessarily) a single unique
reduced form in each proper equivalence class. However, the reduced forms are
arranged naturally in a cycle structure. We only sketch the details of this reduction.

We can imitate the proof of Theorem 5.5 to see immediately the first part of the
following proposition.

Proposition 5.9. Every indefinite quadratic form of some discriminant D is equiv-
alent to one of the form ax2 + bxy+ cy2 with |b| ≤ |a| ≤ |c|. Moreover, such a form

has ac < 0 and |a| ≤ 1
2

√
D.

Proof. Exercise! �

An immediate corollary is that the number of proper equivalence classes of indefinite
binary quadratic forms of discriminant D > 0 is finite

Corollary 5.10. For a given discriminant D > 0, the class number h+(D) of proper
equivalence classes of binary quadratic forms of discriminant D is finite.

Proof. Every equivalence class contains a form ax2 + bxy + cy2 with |a| ≤ 1
2

√
D,

and |b| ≤ |a|. There are only finitely many such choices. We compute c = b2−D
2a

, so
there are only finitely many forms of discriminant D. �

Our notion of a reduced indefinite form, in particular the bounds involved, differ
somewhat from the above result.

Definition 5.11 (Reduced indefinite form). Let f(x, y) = ax2 + bxy + cy2 be a
binary quadratic form of discriminant D > 0. We call f reduced if∣∣∣√D − 2|a|

∣∣∣ < b <
√
D .

Now we have the following properties of reduced forms.

Proposition 5.12. If ax2 + bxy+ cy2 is a reduced indefinite binary quadratic form,
then

• |a|+ |c| < D

• |a|, b, |c| <
√
D

• ac < 0.

Proof. Exercise! �

Definition 5.13 (Reduction operator). Let D > 0 be a discriminant. For a 6= 0, b
integer, define r(b, a) to be the unique integer r such that

r ≡ b (mod 2a) ,

and {
−|a| < r ≤ |a| if |a| >

√
D√

D − 2|a| < r <
√
D if |a| <

√
D

.
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Then the reduction operator ρ is defined on ax2 + bxy + cy2 of discriminant D > 0
by

ρ(ax2 + bxy + cy2) = cx2 + r(−b, c)xy +
r(−b, c)2 −D

4c
y2 .

We then have the following proposition.

Proposition 5.14 (Proposition 5.6.6 in [Coh13, p. 264]). i) Iterating ρ a finite
number of times on any indefinite form ax2 + bxy+ cy2, eventually produces a
reduced form,

ii) If f(x, y) = ax2+bxy+cy2 is a reduced form, then ρ(f(x, y)) is again a reduced
form,

iii) The reduced forms equivalent to f are exactly the forms ρn(f), n sufficiently
large, which are reduced.

Proof. See [Coh13]. �

Remark 5.15. In particular, we can give a method to list a representative of every
proper equivalence class of indefinite binary quadratic forms of fixed discriminant
D.

Step 1: Produce a list L of all reduced forms of discriminant D > 0.
Step 2: Select a reduced form f remaining in L, and iteratively apply ρ to compute

the reduced forms F equivalent to f .
Step 3: Record f (or any other reduced form from F) on the list R of representatives,

then replace L with L \ F . If L 6= ∅, go to Step 2.
Step 4: Output list R of representatives of the reduced forms of discriminant D > 0.

Example 5.16. We find representatives of the equivalence classes of primitive in-
definite binary quadratic forms of discriminant D = 20. To get a reduced form, we

have bounds
∣∣∣√D − 2|a|

∣∣∣ < b <
√
D. And We have bounds |a| ≤

√
20 = 4.47 . . .,

so −4 ≤ a ≤ 4. We list these, and compute c = b2−D
2a

(Notice that we always get D
pairs (a, b), before discarding non-integral forms!)

a b c Integral? Primitive?

−2 2 2 X

−1 4 1 X X

1 4 −1 X X

2 2 −2 X

So reduced forms of discriminant D = 20 are −2x2 + 2xy+ 2y2,−x2 + 4xy+y2, x2 +
4xy− y2, 2x2 + 2xy− 2y2. The primitive ones are −x2 + 4xy+ y2 and x2 + 4xy− y2.

We now compute the ρ-orbits to see if any of the primitive reduced forms are equiv-
alent. To compute ρ(−x2 + 4xy + y2), we need to know r(−4, 1).

We have r(−4, 1) = r, where r ≡ −4 (mod 2). Since |1| = 1 <
√

20 = 4.47 . . ., we
need

√
20−2|1| < r <

√
20, so that 2.47 . . . < r < 4.47 . . .. This means r(−4, 1) = 4.

We get

ρ(−x2 + 4xy + y2) = x2 + 4xy +
42 − 20

4
y2 = x2 + 4xy − y2
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So the ρ-orbit of −x2 + 4xy + y2 is { −x2 + 4xy + y2, x2 + 4xy − y2 }. This deals
with all ρ-orbits of primitive reduced forms. Therefore the two primitive reduced
forms are equivalent, so the is only a single equivalence class of binary quadratic
forms of discriminant D = 20, and h+(20) = 1.

Upshot: Every binary quadratic form of discriminant D = 20 is equivalent to x2 +
4xy−y2. In particular x2−52 and −x2+5y2 both must be equivalent to x2+4xy−y2.
By applying our results, we can say for p 6= 2, 5:

p ≡ 1, 4 (mod 5)
QR⇐⇒

(
20

p

)
= 1

Cor⇐⇒ p = x2 − 5y2

Reduction⇐⇒ p = −x2 + 5y2

Reduction⇐⇒ p = x2 + 4xy − y2

Example 5.17. Repeating the same example for D = 12 leads to the primitive
reduced forms −2x2 + 2xy + y2,−x2 + 2xy + 2y2, x2 + 2xy − 2y2, 2x2 + 2xy − y2.
Under ρ, these split into the orbits{

−2x2 + 2xy + y2, x2 + 2xy − 2y2
}
,
{
−x2 + 2xy + 2y2, 2x2 + 2xy − y2

}
.

So there are two non-equivalent classes of primitive indefinite binary quadratic forms
of discriminant D = 12. So h+(D) = 2. Identifying ax2 + bxy + cy2 and −ax2 +
bxy + cy2 leads to one class containing x2 + 2xy − 2y2. So h(12) = 2.

Applying ρ to x2 − 3y2 produces eventually (after ρ2) x2 + 2xy − 2y2. Applying ρ
to −x2 + 3y2 produces eventually (after ρ2) −x2 + 2xy + 2y2. Since these are in
different ρ-orbits, we see that the forms −x2 + 3y2 and x2 − 3y2 are not equivalent.

Exercise: check the details here!

A calculator is available online at http://www.numbertheory.org/php/classnopos0.
html to compute the class number, and representatives of the equivalence classes of
primitive indefinite binary quadratic forms of discriminant D > 0.

5.3. Finiteness of the class number in general

In this section we say a few words about the finiteness of the class number in general,
for n-ary quadratic forms of fixed determinant d. For simplicity, we assume that the
quadratic forms are classically integral, but since f ∼ g if and only if 2f ∼ 2g, this
is not a serious restriction.

Lemma 5.18 ([Cas08], Lemma 3.1). For each n ≥ 1, there is a constant Cn so that
for any regular integral quadratic form in n-variables, there is a vector a ∈ Zn with
f(a) 6= 0, and

|f(a| ≤ Cn|det(f)|1/n .

With this we can take an arbitrary (classically) integra ln-ary quadratic form of

determinant d, find h = f(a) < Cn|det(f)|1/n. Then we can find an equivalent form
where the x2-coefficient is h. (Compare Lemma 4.19, we can assume a is primitive.)
This means the x2-coefficient lies in a finite set.

http://www.numbertheory.org/php/classnopos0.html
http://www.numbertheory.org/php/classnopos0.html
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Completing the square means we can write

hf(x) = (hx1 + r12x2 + r13x3 + · · · )2 + g(x2, . . . , xn) .

By induction, we can transform g(x2, . . . , xn) to one of a finite number of non-
equivalent forms, modulo SLn−1(Z). We can also substitute x1 → x1 − u2x2 −
u3x3 − · · ·, to ensure the |r1j| < h. This means the RHS above lies in a finite set
of possibilities. Hence f(x) lies in a finite set of possibilities, itself. So the class
number h(n, d) of n-ary quadratic forms, of determinant d is finite.

One can produce tables

• Of equivalence classes of ternary quadratic forms
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Brandt_1.html,
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Brandt_2.html,
• Of quaternary quadratic forms
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/nipp.html,
and higher.

Exercises

Positive-definite.

Exercise 5.19. Apply the algorithm in the existence step of the proof of Theo-
rem 5.5 to find reduced forms equivalent to the following, also give matrices which
show the equivalence:

• 6x2 − 2xy + y2

• 10x2 − 10x+ 3y2

• 5x2 − 10xy + 6y2

• 5x2 + 6xy + 3y2

• 2x2 + 4xy + 5y2

• x2 + 2xy + 7y2

• 8x2 − 2xy + y2

Exercise 5.20. Check that the following, for discriminant D < 0 are always reduced
forms

• For D ≡ 0 (mod 4), the form x2 − D
4
y2,

• For D ≡ 1 (mod 4), the form x2 + xy + 1−D
4
y2.

These are called the principal forms. For D > 0, these forms are not reduced, but
we still call them the principal forms. (These forms correspond to the principal ideal
class in quadratic number fields. See handout 2.)

Exercise 5.21. Suppose that f(x) = ax2 + bxy + cy2 is a positive-definite binary

quadratic form of discriminant D < 0. Suppose a <
√
−D/4 and −a < b ≤ a.

Show that f is reduced.

Exercise 5.22. • Verify the following table of class numbers (in the positive
definite case), by listing all reduced forms of the given discriminant.

http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Brandt_1.html
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Brandt_2.html
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/nipp.html
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D h(D) D h(D)
−3 1 −4 1
−7 1 −8 1
−11 1 −12 1
−15 2 −16 1
−19 1 −20 2
−23 3 −24 2
−27 1 −28 1
−31 3 −32 2
−35 2 −36 2
−39 4 −40 2

• Write a computer program to extend this to all discriminants−32768 < D < 0.
Hint: h(−32767) is divisible by 13. (Runtime of about 30 minutes, is fine)

Exercise 5.23. The entries above for D = −4,−8,−12 correspond to Fermat’s
x2 + y2, x2 + 2y2 and x2 + 3y2 theorems, which we now have powerful techniques
to prove. Since h(D) = 1 for D = −3,−7,−11,−16,−19,−27 and −28, we obtain
corresponding results for these cases.

i) State and prove congruence conditions on when a prime p can be represented
by
• x2 + xy + y2, of discriminant −3,
• x2 + xy + 2y2, of discriminant −7,
• x2 + xy + 3y2, of discriminant −11,
• x2 + 4y2, of discriminant −16,
• x2 + xy + 5y2, of discriminant −19,
• x2 + xy + 7y2, of discriminant −27,
• x2 + 7y2, of discriminant −28.

ii) Show directly that the result p = x2 + 4y2 where D = −16 is (trivially)
equivalent to result for p = x2 + y2 where D = −4.

iii) Similarly show the result for p = x2+7y2 with D = −28 is (trivially) equivalent
to the result for p = x2 + xy + 2y2 with D = −7. Hint: reduce modulo 2 to
show y is even in x2 +xy+2y2, then write x2 +xy+2y2 = (x+y/2)2 +7(y/2)2.

Exercise 5.24. Suppose that the positive-definite form f(x, y) represents the value
1. Show that f(x, y) is equivalent to the principal form (recall this is: either x2+ny2,
for discriminant D = −4n, or x2 + xy + ny2 ,for discriminant D = −4k + 1).

What about if f(x, y) is an indefinite form?

Exercise 5.25. Suppose p is a prime number, represented by two forms f(x, y) and
g(x, y) of discriminant D (positive-definite, or indefinite). Show that f(x, y) and
g(x, y) are equivalent (possibly improperly equivalent). Hint: use Lemma 4.19, and
examine the middle coefficient modulo p.

Exercise 5.26. By considering reduced forms, of the form ax2 + cy2. Show that
the class number of discriminant D can be arbitrarily high. Hint: consider D =
−4p1p2 · · · pk, where pi are distinct primes.

Indefinite.
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Exercise 5.27. Imitate the proof of Theorem 5.5 to show that every indefinite
quadratic form of some discriminant D is equivalent to one of the form ax2+bxy+cy2

with |b| ≤ |a| ≤ |c|. Moreover, show that such a form has ac < 0 and |a| ≤ 1
2

√
D.

Exercise 5.28. If ax2 + bxy + cy2 is a reduced indefinite binary quadratic form,
show that

• |a|+ |c| <
√
D,

• |a|, b, |c| <
√
D, and

• ac < 0.

Exercise 5.29. • Verify the following table of class numbers (in the indefinite
case), by listing all reduced forms of the given discriminant and partitioning
them into ρ-orbits.

D h+(D) D h+(D)
5 1 8 1
12 2 13 1
17 1 20 1
21 2 24 2
28 2 29 1
32 2 33 2
37 1 40 2
41 1 44 2
45 2 48 2
52 1 53 1
56 2 57 2
60 4

• Write a computer program to extend this to all non-square discriminants 0 <
D < 32768.

Exercise 5.30. The entry for D = 8 corresponds to the result for p = x2 − 2y2, as
given in Problem Sheet 2. The entry for D = 20 corresponds to our result above
for p = x2 − 5y2. Since h+(D) = 1 for D = 5, 13, 17, 20, 29, 7, 41, 52, 53, we obtain
corresponding results for these cases.

i) State and prove congruence conditions on when a prime p can be represented
by
• x2 + xy − y2 of discriminant D = 5,
• x2 + xy − 3y2 of discriminant 13,
• x2 + xy − 4y2 of discriminant 17,
• x2 + xy − 7y2 of discriminant 29,
• x2 + xy − 9y2 of discriminant 37,
• x2 + xy − 10y2 of discriminant 41,
• x2 − 13y2 of discriminant 52,
• x2 + xy − 1y2 of discriminant 53.

ii) Derive a result for x2 − 17y2 using the result for x2 + xy − 4y2. Hint: reduce
x2 +xy−4y2 modulo 2 to show y is even, and write x2 +xy−4y2 = (x+ y

2
)2−

17(y
2
)2.

iii) Derive a result for x2 − 41y2 using the result for x2 + xy − 10y2.
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Exercise 5.31. Suppose that D = 8k + 1 is a discriminant, and that h+(D) =
1. By considering the primes which x2 + xy − 2ky2 represents, show that every
binary quadratic form of discriminant 4D is equivalent to x2−2ky2. Hence conclude
h+(4D) = 1. (You may assume that any primitive integral binary quadratic form
attains a prime value - this follows from the Chebotarev density theorem.)





CHAPTER 6

Class number 1 and genus theory

Lecture 8
14/06/2017

While the techniques we have so far are relatively powerful (reducing Fermat’s con-
jectures to algorithmic exercises!), we can only obtain results in the case of class
number 1. But as we already know, class number 1 does not always occur (and in
fact the situation is quite dire). With genus theory we can obtain further results,
beyond class number 1.

6.1. Class number 1

If the class number is one, then we can use Corollary 4.21 to completely solve our
question of when p = x2 + ny2. We therefore wish to study when h(D) = 1 and
h+(D) = 1. Unfortunatey, I claim that in the positive definite case, h(D) = 1 is
very rare. In fact only finitely many times does it occur.

Theorem 6.1. Suppose that D = −4n < 0 is a discriminant. Then h(D) = 1 if
and only if

n = 1, 2, 3, 4, 7 .

Proof. It is easy to check that h(D) = 1 these cases. The proof that these are
the only cases is given via an exercise, where we explicitly construct reduced forms
other than x2 + ny2, showing that h(D) ≥ 2. �

A more much difficult theorem to prove is a classification of all negative discriminants
D ≡ 0, 1 (mod 4) for which h(D) = 1.

Theorem 6.2 (Baker-Heegner-Stark). Suppose that D < 0 is a discriminant. Then
h(D) = 1 if and only if

D = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163 .

Proof. We will not prove this theorem. A proof requires modular functions and
complex multiplication. �

Basically this means we can only solve finitely many p = x2+ny2 with the techniques
we have currently. And the only interesting case beyond Fermat is:

• For p 6= 2, 7:

p = x2 + 7y2 Cor⇐⇒
(
−28

p

)
= 1

⇐⇒
(
−7

p

)
= 1

47



48 6. CLASS NUMBER 1 AND GENUS THEORY

QR⇐⇒
(
p

7

)
= 1

⇐⇒ p ≡ � (mod 7)

⇐⇒ p ≡ 1, 2, 4 (mod 7)

Plus we get some results for the corresponding p = x2 +xy+ny2, where D = 1−4n,
such as:

• for p 6= 2, 67:

p = x2 + xy + 31y2 Cor⇐⇒
(
−67

p

)
= 1

QR⇐⇒
(
p

67

)
= 1

⇐⇒ p ≡ � (mod 67)

⇐⇒ p ≡ 1, 3, 4, 5, . . . , 64, 65 (mod 67) .

If we turn to indefinite forms instead, then there are infinitely many cases where
h(D)+ = 1, although there is a ‘trick’ to constructing them.

Claim 6.3. For each n > 0, we have

h+(4 · 169n · 13) = 1 ,

so that every binary quadratic form of discriminant D = 4 · 169n · 13 is equivalent
to the principle form

x2 − 169n · 13y2 .

Therefore, for p 6= 2, 13 we have

p = x2 − 169n · 13y2 Cor⇐⇒
(

169n · 13

p

)
= 1

⇐⇒
(

13

p

)
= 1

QR⇐⇒ p ≡ 1, 3, 4, 9, 10, 12 (mod 13)

If we disallow this ‘trick’, and focus only on so-called fundamental discriminants
D = 4k + 1 square-free or D = 4k, k square-free and, k ≡ 2, 3 (mod 4). I.e.
discriminants D which are not of the form D = m2D0, with D0 a discriminant.
Then the question of whether there are infinitely many such discriminants with
class number h+(D) = 1 remains open, but the it appears that h+(D) = 1 much
more frequently that in the positive-definite case. And the list appears to continue
indefinitely.

Proposition 6.4. For discriminant D equal to

D =

{
5, 8, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101,

109, 113, 137, 149, 157, 173, 181, 193, 197, . . .
,

the class number h+(D) = 1.
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(Notice that these are all prime, and congruence to 1 (mod 4), except for D = 8.
This is provable!) So we get various conditions like

p = x2 + xy − 15y2 Cor⇐⇒
(
p

61

)
= 1

QR⇐⇒ p ≡ � (mod 61)

⇐⇒ p ≡ 1, 3, 4, 5, . . . , 57, 58, 60 (mod 61)

Conjecture 6.5. There are infinitely many fundamental discriminants D > 0 such
that h(D) = 1. [Equivalently, using the link between quadratic forms and quadratic

numbe rfields: infinite many real quadratic fields K = Q(
√
D) have class number

h+
K = 1. It is not even known whether hK = 1 occurs infinitely often.]

If the class number is > 1, can we do anything?

6.2. Elementary aspects of genus theory

Let us study the first case of x2 + ny2 where the class number is > 1. This is
D = −20, with x2 + 5y2.

Example 6.6. Using our theory, we have for p 6= 2, 5:

p ≡ 1, 3, 7, 9 (mod 20)
QR⇐⇒

(
−20

p

)
= 1

Cor +⇐⇒
Reduction

p =

{
x2 + 5y2 or

2x2 + 2xy + 3y2

But let us consider the values that p = x2 + 5y2 attains in (Z/20Z)∗ (since we only
care abut primes p - 20, in particular coprime to 20). Look modulo 5, and combine
with the result that p ≡ 1, 3, 7, 9 (mod 20). We have

x2 + 5y2 ≡ x2 ≡ 0, (±1)2, (±2)2 (mod 5) ≡ 0, 1, 4 (mod 5)

For p 6= 2, 5 prime, only p ≡ 1, 4 (mod 5) is possible, which means from our mod 20
list, we have p ≡ 1, 9 (mod 20).

Similarly

2x2 + 2xy + 3y2 ≡ 2(x2 + xy + 4y2)

≡ 2(x+ 3y)2

≡ 0, 2 · (±1)2, 2 · (±2)2

≡ 0, 2, 3 (mod 5)

For p 6= 2, 5 prime, only p ≡ 2, 3 (mod 5) is possible. This means from out mod 20
list, we must have p ≡ 3, 7 (mod 20).

Thus we have

p = x2 + 5y2 ⇒ p ≡ 1, 9 (mod 20)

p = 2x2 + 2xy + 3y2 ⇒ p ≡ 3, 7 (mod 20) .

Now let us make the following argument to show the reverse implications. Let
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Let p ≡ 1, 9 (mod 20). Then certainly p ≡ 1, 3, 7, 9 (mod 20), so we can write

p =

{
x2 + 5y2 or

2x2 + 2xy + 3y2
.

If p 6= x2 + 5y2, then it must be represented by the other form. But this means
p = 2x2 + 2xy + 3y2, and so p ≡ 3, 7 (mod 20), a contradiction. Hence p ≡
1, 9 (mod 20)⇒ p = x2 + 5y2.

Similarly, if p ≡ 3, 7 (mod 20), then p = x2 + 5y2 or p = 2x2 + 2xy + 3y2. If
p 6= 2x2 + 2xy + 3y2, then p = x2 + 5y2, so p ≡ 1, 9 (mod 20), contradiction. Hence
p ≡ 3, 7 (mod 20)⇒ p = 2x2 + 2xy + 3y2.

Upshot: For p 6= 2, 5 we have

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

p = 2x2 + 2xy + 3y2 ⇐⇒ p ≡ 3, 7 (mod 20) .

Let’s take a moment to identify some of the (potential) key properties which made
this argument work. Each quadratic form represents a certain set of congruence
classes ni (Z/DZ)∗ (since we only focus on odd primes p - D, so satisfy gcd(p,D) =
1). Different forms represent disjoint sets of values, and so these values characterise
which primes the given form represents. We want to see that this is not an accident,
and so to justify the following definition.

Definition 6.7 (Genus). Let f(x, y) and g(x, y) be two primitive integral binary
quadratic forms of discriminant D. We say that f(x, y) and g(x, y) are in the same
genus if they represent the same values in (Z/DZ)∗.

To answer this, it is helpful to introduce an alternative description of Corollary 4.21,
by means of a certain group homomorphism.

Lemma 6.8. If D ≡ 0, 1 (mod 4) is a non-zero integer (in particular a discrimi-
nant!), then there is a unique group homomorphism

χ : (Z/DZ)∗ → {±1 } ,

such that χ([p]) =
(
D
p

)
for odd primes p - D.

Proof. See handout 3 for a sketch of the proof. This uses the Jacobi symbol, a
generalisation fo the Legendre symbol. �

In particular, we can restate Corollary 4.21 in the following ways

Corollary 6.9 (Descent). Let D be a discriminant, and let p be an odd prime
not dividing D. Then p is represented by a primitive binary quadratic form of
discriminant D if and only if [p] ∈ kerχ ⊂ (Z/DZ)∗.

Remark 6.10. This more rigorously establishes the result
(

4n
p

)
= 1 is characterised

by a congruence condition modulo D = 4n, that I mentioned for
(
n
p

)
=
(

4n
p

)
= 1

after the proof of Quadratic Reciprocity Theorem 3.9. It also deals with the case
D = 4n+ 1. Moreover, we see extra structure in the set of congruence classes: they
form a subgroup of (Z/DZ)∗.
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We can now give a characterisation of the values in (Z/DZ)∗ that binary quadratic
forms of discriminant D represents. We also define the principal form of discriminant
D:

x2 − D

4
y2for D ≡ 0 (mod 4)

x2 + xy +
1−D

4
y2for D ≡ 1 (mod 4)

Theorem 6.11. Given an integer D ≡ 0, 1 (mod 4), and kerχ ⊂ (Z/DZ)∗ as above.
Let f(x, y) be a primitive integral binary quadratic form of discriminant D. Then

i) THe values in (Z/DZ)∗ represented by the principal form of discriminant D
form a subgroup H ⊂ kerχ.

ii) The values in (Z/DZ)∗ represented by f(x, y) form a coset of H in kerχ.

In particular, the values represented in (Z/DZ)∗ by two binary quadratic forms of
discriminant D are either disjoint, or identical.

Sketch. Firstly, to see H ⊂ kerχ, we need to check that if m = f(x0, y0), with
gcd(m,D) = 1, then [m] ∈ kerχ. But m = d2m′, where m′ is properly represented
by f(x, y), and d = gcd(x0, y0). Then χ([m]) = χ([d])2χ([m′]) = χ([m′]), so we can
assume m itself is properly represented by f(x, y). Hence D = b2 − 4mk, using
Lemma 4.20. Now if m odd, the Jacobi symbol (not Legendre symbol) gives(

D

m

)
=

(
b2 − 4km

m

)
=

(
b2

m

)
=

(
b

m

)2

= 1

(The case m even requires a little more work: show D ≡ 1 (mod 8), then use
property

(
2

8k+1

)
= 1.)

For i) Using (x2 + ny2)(w2 + nz2) = (xw − nzy)2 + n(xz + wy)2, we see H is a
subgroup for D ≡ 0 (mod 4). For D ≡ 1 (mod 4), we can use

4(x2 + xy +
1−D

4
y2) ≡ (2x+ y)2 (mod D) ,

so that H is the subgroup of squares in (Z/DZ)∗.

For ii), if D = −4n, and f(x, y) = ax2 + bxy + cy2 then b is even and we can write

af(x, y) = (ax+ b
2
y)2 + ny2 ,

so that the values of f(x, y) in (Z/DZ)∗ lie in the coset [a]−1H. Then given [c] ∈
[a]−1H, we have ac ≡ z2 +nw2 (mod 4n), for some w, z. Now take y0 ≡ w (mod D),
and solve ax+ b

2
y ≡ z (mod D), to obtain x0 ≡ a−1(z − b

2
y0) (mod D). This shows

that f(x0, y0) ≡ c (mod D), so f(x, y) represents exactly the coset [a]−1H. The
result for D ≡ 1 (mod 4) is similar. �

Given a coset H ′ of H ∈ kerχ, we can define the genus of H ′ be consist of all forms
of discriminant D which represents the values of H ′ in (Z/DZ)∗.

Remark 6.12. We might ask whether every coset of H in kerχ occurs as the values
represented by some quadratic form. It does, but a quick proof of this relies on a
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rather difficult theorem. Dirichlet’s theorem on primes in arithmetic progressions
tells us that for gcd(m, b) = 1, there are infinitely many primes

p ≡ b (mod m) ,

in particular there is an odd prime p - D such that p ≡ b (mod D). Then [p] ∈ kerχ
means

(
D
p

)
= 1, so that p is represented by a form of discriminant D, and in

particular arbitrary b ∈ kerχ is represented by some quadratic form of discriminant
D. Thus any coset bH does arise.

We then obtain

Theorem 6.13.Lecture 9
21/06/2017

Let D be a discriminant, and H ⊂ kerχ be the subgroup of values
represented by the principal form. IF H ′ is a coset of H in kerχ, and p - D is an
odd prime. THen

[p] ∈ H ′ ⇐⇒ p is represented by a (reduced)

form of discriminant D in the genus of H ′.

In particular, if every genus of discriminant D consists of a single quadratic form,
then we obtain congruence for when p = f(x, y), for every quaratic form of dicrimi-
nant D. Unfortunately, this (also!) does not always happen.

Example 6.14. The (reduced) primitive forms of discriminant −56 are

x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2 .

We have that(
−56

p

)
= 1 ⇐⇒ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56) .

(Either by just checking for kerχ : (Z/56Z)∗ → {±1 }, or by using quadratic reci-
procity.)

We find (necessary conditions on the) values which the principal form represents in
(Z/56Z)∗ by reducing modulo 7, to see

x2 + 14y2 ≡ x2 ≡ 1, 2, 4 (mod 7) .

So the represented values H must be contained in

{ 1, 9, 15, 23, 25, 39 } ⊂ (Z/56Z)∗ .

(These are the classes in kerχ which map to 1, 2, 4 when taken modulo 7.) Similarly,
2x2 + 7y2 ≡ 2x2 ≡ 2, 4, 1 (mod 7), so the values it represents must also be contained
in

{ 1, 9, 15, 23, 25, 39 } ⊂ (Z/56Z)∗ .

By changing x→ −x, it is clear that the other forms represent the same values, so
the cosets of H they determine must be equal. Now if #H < 6, we cannot cover the
remaining > 6 values { 3, 5, 13, 19, 27, 45 } with a single coset. This is a problem,
since cosets of a subgroup H ⊂ kerχ must partition the group kerχ. So #H = 6,
and we have the following{

x2 + 14y2

2x2 + 7y2

represents−−−−−→ { 1, 9, 15, 23, 25, 39 } ⊂ (Z/56Z)∗
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3x2 ± 2xy + 5y2 represents−−−−−→ { 3, 5, 13, 19, 27, 45 } ⊂ (Z/56Z)∗

So the genus of H = { 1, 9, 15, 23, 25, 39 } consists of { x2 + 14y2, 2x2 + 7y2 }. And
the genus of { 3, 5, 13, 19, 27, 45 } consists of { 3x2 ± 2xy + 5y2 }.

By Theorem 6.11, we immediately obtain for p 6= 2, 7:

p =

{
x2 + 14y2

2x2 + 7y2
⇐⇒ p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

p = 3x2 ± 2xy + 5y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56) .

Moreover, since 3x2 ± 2xy + 5y2 obviously represent the same values (they are
GL2(Z)-equivalent via x 7→ −x), we even get

p = 3x2 + 2xy + 5y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56) .

In order to study genus theory more deeply (to figure out when it works, and to
understand some further properties), we need to first study the composition of binary
quadratic forms.

Exercises

Class number 1.

Exercise 6.15. Suppose m > 1 is an integer, and m 6= pr is not a prime power.
Show that we can write m = ac, where 1 < a < c, and gcd(a, c) = 1.

Exercise 6.16. In this exercise we will prove that h(−4n) = 1, for n > 0 if and
only if n = 1, 2, 3, 4, 7.

• Show that h(−4n) = 1 for these n, by listing the reduced forms.
• Suppose that n is not a prime power. Use the previous exercises to write down

a second reduced form of discriminant −4n. Hint: b = 0.
• Suppose that n = 2r. If r ≥ 4, show that

4x2 + 4xy + (2r−2 + 1)y2

is reduced, and is primitive. Check that h(−4n) > 1, for r = 3, also.
• Suppose now that n = pr, p an odd prime. Suppose n + 1 = ac, where

2 ≤ a < c, and gcd(a, c) = 1. Show that

ax2 + 2xy + cy2

is reduced of discriminant −4n.
• Finally, suppose that n = pr, but that n+ 1 = 2s. If s ≥ 6, show that

8x2 + 6xy + (2s−3 + 1)y2

is a reduced form of discriminant −4n. What happens for s = 1, 2, 3, 4, 5?
• Conclude that h(−4n) = 1 if and only if n = 1, 2, 3, 4, 7.
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Elementary genus theory.

Exercise 6.17. Apply the idea from p = x2 + 5y2 from Example 6.6, or the general
result from Theorem 6.11, to obtain congruence conditions for

• p = x2 + 6y2 and the other form of discriminant −24,
• p = x2 + 8y2 and the other form of discriminant −32,
• p = x2 + 21y2, and the other 3 forms of discriminant −84,
• p = x2 − 3y2, and the other form of discriminant 12,
• p = x2 − 10y2 and the other form of discriminant 40.
• p = x2 − 15y2 and the other 7 forms of discriminant 60.

Exercise 6.18. It is not possible to obtain a congruence condition for p = x2 +56y2,
even by using the genus theory Theorem 6.11. What is the best result you can obtain
for p = x2 + 56y2, and the other 5 forms of discriminant −224? Hint: it is possible
to give congruence conditions for some of the forms.

Exercise 6.19. Show that the values in (Z/DZ)∗ represented by f(x, y), a form of
discriminant D ≡ 1 (mod 4) form a coset of H (the values of the principal form), in
kerχ.

Exercise 6.20. Suppose that f(x, y) and g(x, y) are two binary quadratic forms
of discriminant D. Suppose that f(x, y) and g(x, y) are GL2(Q)-equivalent, via a
matrix whose entries have denominators all coprime to 2D. Show that f(x, y) and
g(x, y) represent the same values in (Z/NZ)∗, for all non-zero N . Conclude that
f(x, y) and g(x, y) are in the same genus.

Exercise 6.21. Recall that x2 +14y2 and 2x2 +7y2 are in the same genus, since they
both represent { 1, 9, 15, 23, 25, 39 } ⊂ (Z/56Z)∗. Show that x2 + 14y2 and 2x2 + 7y2

are GL2(Q)-equivalent, as forms over the rational numbers. (Hint: denominator 5
works.) Conclude, in particular, that congruence conditions can never separate the
primes represented by x2 + 14y2 and 2x2 + 7y2.

Exercise 6.22. Show that 2x2 +9x2 and x2 +18y2 are GL2(Q)-equivalent, as forms
over the rational numbers. (Hint: denominator 9 works.) Show however, that
2x2 + 9y2 and x2 + 18y2 are in different genera. (If they represent the same vaues in
(Z/72Z)∗, then the same holds for any divisor of 72.) What differs from the previous
exercise?



CHAPTER 7

Composition of binary quadratic forms

In this chapter we introduce the composition of binary quadratic forms. This allows
us to give the set of all proper equivalence classes of binary quadratic forms a group
stucture. This group structure is useful both to further study genus theory, and
to obtain other results about representations of (multiples) of primes by binary
quadratic forms.

We have already seen some examples of this composition, namely the identities

(x2 + ny2)(w2 + nz2) = (xw − nzy)2 + n(xz + yw)2 ,

which we read as saying the form x2 + ny2 composed with itself, is itself. Similarly,
we have the identity

(3x2 + 2xy + 5y2)(3z2 + 2zw + 5w2) = (wx+ 5wy + 3xz + yz)2 + 14(wx− yz)2

composing the form 3x2 + 2xy + 5y2 with itself to get the form x2 + 14y2. How do
we understand and generalise these identities?

7.1. Definition and setup

Definition 7.1 (Composition of quadratic forms). Let f(x, y) and g(x, y) be two
primitive binary quadratic forms of discriminant D. We say that a form F (x, y) of
discriminant D is the composition of f and g provided that

f(x, y)g(z, w) = F (B1(x, y; z, w), B2(x, y; z, w)) ,

where
Bi(x, y; z, w) = aixz + bixw + ciyz + diyw

is an integral bilinear form. ai, . . . , di ∈ Z.

We would like, ideally, that whenever we compose f and g using different Bi, we
obtain a properly equivalent form. Unfortunately this does not happen, not even
up to improper equivalence.

(14x2 + 10xy + 21y2)(9w2 + 2wz + 30z2) =

126(−wx+ wy + 2xz + 3yz)2+

38(−9wy − 14xz − 6yz)(−wx+ wy + 2xz + 3yz)

+ 5(−9wy − 14xz − 6yz)2

(14x2 + 10xy + 21y2)(9w2 + 2wz + 30z2) =

126(−wx− 3wy + 4xz − yz)2+

74(9wy − 14xz − 4yz)(−wx− 3wy + 4xz − yz)+

13(9wy − 14xz − 4yz)2 +

55
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One can then check that (126, 38, 5) and (126, 74, 13) are in different equivalence
classes (proper, or improper)! (Check that the first doesn’t represent 13, for exam-
ple.)

Fortunately, we can fix this situation. Given any composition data, as above, Gauss
proved that we have

a1b2 − a2b1 = ±f(1, 0),

a1c2 − a2c1 = ±g(1, 0) .

By restricting to the case where both signs are + we obtain

Definition 7.2 (Direct composition, Gauss). Given F a composition of f and g, as
above. We say F is the direct composition provided that

a1b2 − a2b1 = +f(1, 0),

a1c2 − a2c1 = +g(1, 0) .

It turns out that (126, 38, 5) is the direct composition, in the previous case. We
now have some questions. Is it always possible find the (direct) composition of two
quadratic forms? If so, how can we do this explicitly?

Dirichlet gives an explicit construction of the composition of (a, b, c) and (a′, b′, c′),
subject to some assumptions on gcd(a, a′, 1

2
(b+ b′)) = 1. We follow a version of this

given in [Cas08], which makes it clear that this restriction is not a problem.

7.2. Dirichlet composition

We will use the notation (a, b, c) = ax2 + bxy + cy2 for integral (primitive) binary
quadratic forms, and write (a, b, c) ∼ (p, q, r) to mean (a, b, c) and (p, q, r) are prop-
erly equivalent. If we fix the discriminant D, we may write (a, b, ∗) to mean the

(unique) form (a, b, b
2−D
4a

) of discriminant D.

Lemma 7.3. Let f = (a, b, c) be a primitive form, and M any integer. Then f
represents some integer coprime to M . By dividing through by the gcd, we can
assume it properly represents an integer coprime to M .

Proof. Exercise. �

Lemma 7.4. Suppose (a1, b, c1) and (a2, b, c2) are two equivalent, primitive forms
with the same middle coefficient. Let l be an integer such that l | c1, c2, and
gcd(a1, a2, l) = 1. Then

(la1, b, l
−1c2) ∼ (la2, b, l

−1c2) .

Proof. From the matrix T = ( r st u ) converting from (a1, b, c1) to (a2, b, c2), one
obtains the equations

a1s+ c2t = 0

a2s+ c1t = 0 ,

whence l | s. So the matrix (
r l−1s
lt u

)
gives the equivalence (la1, b, l

−1c2) ∼ (la2, b, l
−1c2). �
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Definition 7.5. Given two primitive forms fi = (ai, bi, ci) of discriminant D, we
shall say f1 and f2 are concordant if a1a2 6= 0 and b1 = b2 =: b, and the form
(a1a2, b, ∗) of discriminant D is integral.

Observe that (a1a2, b, ∗) is primitive: otherwise p | a1a2, b,
b2−D
4a1a2

. Without loss of

generality, p | a1. So we get p | a1, b. Finally p | a2 · b
2−D

4a1a2
= c1 since it divides the

second factor.

Given two concordant forms fi = (ai, bi, ci), we will show (afterwards) that (a1a2, b, ∗)
is the direct composition f1◦f2s of f1 and f2. Whence we can take this as the defini-
tion of composition of quadratic forms. We will also show that given any two primi-
tive quadratic forms, one can find equivalent concordant forms with gcd(a1, a2) = 1,
so that the this composition always works.

Lecture 10
28/06/2017

Lemma 7.6. Let C1, C2 be two classes of primitive forms of discriminant D. Then
we can find concordant forms fi = (ai, b, ∗) in Ci. Moreover, we may choose these
concordant forms so that a1, a2 are coprime, and are coprime to any integer M ,
given in advance.

Proof. By the first lemma, f1 properly represents some integer a1 coprime toM . So
f1 (a1, b1, ∗). Then f2 properly represents some a2 prime to a1M , so f2 ∼ (a2, b2, ∗).
The SL2(Z)-change of variables x 7→ x + liy sends bi → b∗i = bi + 2aili. We have
b1 ≡ b2 (mod 2) and since a1, a2 coprime we can choose l1, l2 so that b∗1 = b∗2 = b by
solving the system of equations

b ≡ b1 (mod 2a1)

b ≡ b2 (mod 2a2) .

We can assume a1 is odd, and so write the system as

b ≡ b1 (mod 2)

b ≡ b1 (mod a1)

b ≡ b2 (mod 2a2) .

Reducing the last mod 2 shows that b ≡ b2 ≡ b1 (mod 2), so the first is a conse-
quence, and we can drop it. Then we can directly apply Chinese Remainder Theorem
to write b = b2a1λ+ b12a2µ, where 1 = gcd(a1, 2a2) = a1λ+ 2a2µ.

Thus f1 ∼ (a1, b, ∗) and f2 ∼ (a2, b, ∗) are (equivalent to) concordant forms, as
required. �

Thus we can always find the composition of two quadratic forms by choosing a pair
of equivalent concordant forms. We still need to check that this is well defined,
so that by choosing a second equivalent pair of concordant forms, we obtain an
equivalent composition.

Lemma 7.7. Suppose that C1 and C2 are two classes of quadratic forms. Suppose
that f ′1 = (a′1, b

′, ∗) and f ′2 = (a′2, b
′, ∗) are a pair of concordant forms with f ′i ∈ Ci.

Suppose that f ′′1 = (a′′1, b
′′, ∗) and f ′′2 = (a′′2, b

′′, ∗) are another pair of concordant
forms with f ′′i ∈ Ci. Then the composition f ′1 ◦ f ′2 and f ′′1 ◦ f ′′2 are in the same class.
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Proof. Using the first lemma with M = a′1a
′
2a
′′
1a
′′
2, we can find a concordant pair

f1 = (a1, b, ∗), f2 = (a2, b, ∗) so that

f1 ∼ f ′1, f2 ∼ f ′2

with

gcd(a1, a2) = 1 = gcd(a1a2, a
′
1a
′
2a
′′
1a
′′
2) .

It is sufficient to show that f1 ◦ f2 = (a1a2, b, ∗) ∼ (a′1a
′
2, b
′, ∗) = f ′1 ◦ f ′2, since the

same argument applies to get ∼ (a′′1a
′′
2, b
′′, ∗) = f ′′1 ◦ f ′′2 .

The gcd above means gcd(a1a2, a
′
1a
′
2) = 1, so as before we can find B such that

B ≡ b (mod 2a1a2)

B ≡ b′ (mod 2a′1a
′
2) .

Then we have

(ai, B, ∗) ∼ (ai, b, ∗) = fi ∼ f ′i = (a′i, b
′, ∗) ∼ (a′i, B, ∗)

Consider

(a1, B,
B2−D

4a1
) ∼ (a′1, B,

B2−D
4a′1

)

Notice that B2−D is divisible by 4a′1a
′
2 since (a′1, b

′, ∗) and a′2, b
′, ∗) are concordant.

Also it is divisible by 4a1, where gcd(a1, a
′
1a
′
2) = 1 by construction. Hence it is

divisible by 4a1a
′
2. Taking l = a′2 and using the second lemma, we get

(a1a
′
2, B, ∗) ∼ (a′1a

′
2, B, ∗)

Similarly using l = a1 we get

(a2, B, ∗) ∼ (a′2, B, ∗)⇒ (a1a2, B, ∗) ∼ (a1a
′
2, B, ∗) .

From this, the required equivalence follows as

(a′1a
′
2, B, ∗) ∼ (a1a

′
2, B, ∗) ∼ (a1a2, B, ∗) .

�

Theorem 7.8 (Class group). The composition discussed above endows the set of
equivalence classes of primitive binary quadratic forms, of discriminant D with the
structure of a finite abelian group. This is called the class group C(D) (for positive-
definite) or C+(D) for indefinite forms.

Sketch. The identity element is the principal form (1, 0, ∗) ∼ (1, b, ∗) or (1, 1, ∗) ∼
(1, b, ∗) according to D (mod 4). The indicated equivalent forms are concordant with
(a, b, c), and the definition of composition shows the principal form is the identity.

Commutativity follows immediately by definition (a1, b, ∗)◦ (a2, b, ∗) = (a1a2, b, ∗) =
(a2, b, ∗) ◦ (a1, b, ∗).

Associativity holds because the class of f1 ◦ (f2 ◦ f3) and (f1 ◦ f2) ◦ f3 both contain
(a1a2a3, b, ∗).

The inverse of (a, b, c) is (a,−b, c) ∼ (c, b, a), improperly equivalent form to (a, b, c).
This is because the composition is (ac, b, 1), which represents 1, so it belongs to the
principal class. �
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Finally, we show that the composition using concordant forms gives us direct com-
positions in Gauss’s sense. Since the direct composition involves bilinear forms, a
SL2(Z)-change of variabiesl in any of the 3 forms still produces a composition law.
(See Exercise!) Thus we can change to a more convenient choice of forms.

Proposition 7.9. Let f1, f2 be two primitive binary quadratic forms. And suppose
that the following concordant forms are equivalent to f1, f2

(a,B, a′C) and (a′, B, aC)

where C = B2−D
4a′a′

). The composition (aa′, B, C) is the direct composition of the
concordant forms above.

Proof. We have the following composition law

(ax2 +Bxy + a′Cy2)(a′z2 +Bzw + aCw2) = aa′X2 +BXY + CY 2 ,

where X = xz − Cyw and Y = axw + a′yz +Byw.

This is direct since

f1(1, 0) = a = a1︸︷︷︸
xz∈X:1

b2︸︷︷︸
xw∈Y :a

− a2︸︷︷︸
xz∈Y :0

b1︸︷︷︸
xw∈X:0

f2(1, 0) = a′ = a1︸︷︷︸
xz∈X:1

c2︸︷︷︸
yz∈Y :a′

− a2︸︷︷︸
xz∈Y :0

c1︸︷︷︸
yz∈X:0

�

Aside from needing to finding an explicit change of variables to a pair of concor-
dant forms, we can in principle produce such identities for any choice of primitive
quadratic forms.

Example 7.10. Let us find the composition of the reduced forms (3, 2, 16) and
(7,−6, 8). We have

(3, 2, 16) ∼ (3, 2 + 2 · 3, 21) via x 7→ x+ y

(7,−6, 8) ∼ (7,−6 + 2 · 7, 9) via x 7→ x+ y .

These two forms are concordant and the composition is (21, 8, 3). We have the
explicit direct composition law

(3x2 + 8xy + 21y2)(7z2 + 8zw + 9w2) = 21X2 + 8XY + 3Y 2 ,

with X = xz − 3yw, and Y = 3xw + 7yz + 8yw.

Finally, we can observe that (21, 8, 3) is equivalent to (3,−8, 21) via X 7→ −Y, Y 7→
X which is a proper equivalence, and the result is equivalent to the reduced form
(3,−2, 16) via X 7→ X − Y . So inverting these we get

(3x2 + 8xy + 21y2)(7z2 + 8zw + 9w2)

= 3(X + Y )2 − 2(X + Y )(−X) + 16(−X)2

= 3(xz + 3xw + 7yz + 5yw)2+

− 2(xz + 3xw + 7yz + 5yw)(−xz + 3yw)+

+ 16(−xz + 3yw)2) .
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Finally, we put x 7→ x − y and z 7→ z − w to recover the two original forms, and
obtain

(3x2 + 2xy + 16y2)(7z2 − 6wz + 8w2)

= 3(xz + 2xw + 6yz − 4yw)2+

− 2(xz + 2xw + 6yz − 4yw)(−xz + wx+ yz + 2yw)+

+ 16(−xz + wx+ yz + 2yw)2

This is still direct since

f1(1, 0) = 3 = a1︸︷︷︸
xz∈X:1

b2︸︷︷︸
xw∈Y :1

− a2︸︷︷︸
xz∈Y :−1

b1︸︷︷︸
xw∈X:2

f2(1, 0) = 7 = a1︸︷︷︸
xz∈X:1

c2︸︷︷︸
yz∈Y :1

− a2︸︷︷︸
xz∈Y :−1

c1︸︷︷︸
yz∈X:6

The following web pages have calculators to compute the composition of two qua-
dratic forms of discriminant D, for positive-definite and indefinite forms:

• Positive-definite: http://www.numbertheory.org/php/composeneg.html
• Indefinite: http://www.numbertheory.org/php/composepos.html

Example 7.11. We can also prove some non-trivial results about which fixed multi-
ples of primes, and when products of two primes can be written as certain quadratic
forms.

We have that for p 6= 2, 7:

3p = x2 + 14y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56) .

Since 3 is represented by 3x2 + 2xy + 5y2, the direction ⇐ follows from the compo-
sition (3, 2, 5) ◦ (3,−2, 5) = (3, 2, 5) ◦ (5, 2, 3) = (15, 2, 1) ∼ (1, 0, 14). For ⇒, we see
that 3p = x2+14y2 implies p | x2+14y2, so p = x2+14y2, 2x2+7y2, or 3x2±2xy+5y2.
If p = x2 + 14y2, 2x2 + 7y2, then p ≡ 1, 9, 15, 23, 25, 39 (mod 56), so that 3p ≡
3, 5, 13, 19, 27, 45 meaning 3p 6= x2 + 14y2. Hence p = 3x2± 2xy+ 5y2 which implies
p ≡ 3, 5, 13, 1927, 45 (mod 56).

More generally, the same argument show that if we have q 6= 2, 7 is any prime
represented by 3x2 + 2xy + 5y2, then for p 6= 2, 7:

pq = x2 + 14y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56) .

However, if q is represented by one of the other forms, and not 3x2 +2xy+5y2, then

pq = x2 + 14y2 ⇐⇒

{
p and q = 2x2 + 7y2 or

p and q = x2 + 14y2
.

This is somehow intuitively clear, but is requires a little work to prove directly.

Overall this says that for odd primes p, q with
(

14
p

)
=
(

14
q

)
= 1, then

pq = x2 + 14y2 ⇐⇒ p, q are represented by the same form

http://www.numbertheory.org/php/composeneg.html
http://www.numbertheory.org/php/composepos.html
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Exercises

Exercise 7.12. Let f = (a, b, c) be a primitive form, and M any integer. Show that
f represents some integer coprime to M . Show also that we can assume f properly
represents some integer coprime to M .

Exercise 7.13. Suppose that F is (a) direct composition of f and g. If f ∼ f ′ and
g ∼ g′, and F ′ ∼ F , show that F ′ is a direct composition of f ′ and g′. So we can
use the Dirichlet composition to find the direct composition with explicit bilinear
forms.

Exercise 7.14. Suppose that pq = X2 + 14Y 2 and q = 2a2 + 7b2. By considering
the composition

p(2a2 + 7b2)(2a2 + 7b2) = (X2 + 14Y 2)(2a2 + 7b2)

= 2(aX + 7bY )2 + 7(−bX + 2aY )2 .

By reducing 2a2 + 7b2, and X2 + 14Y 2 modulo q, show that we may choose the sign
±a,±b,±X,±Y , so that

q | aX + 7bY,−bX + 2aY ,

hence conclude that p is represented by 2x2 + 7y2.

Exercise 7.15. Suppose that F = (A,B,C) is the composition of f = (a, b, c) and
g = (a′, b′, c′) via

f(x, y)g(z, w) = F (a1xz + b1xw + c1yz + d1yw,

a2xz + b2xw + c2yz + d2yw) .

Suppose all 3 forms have the same discriminant D 6= 0.

i) By specialising variables x, y, w, z prove that

aa′ = Aa2
1 +Ba1a2 + Ca2

2

ac′ = Ab2
1 +Bb1b2 + Cb2

2

ab′ = 2Aa1b1 +B(a1b2 + a2b1) + 2Ca2b2 .

Hint: try x = z = 1, y = w = 0 for the first.
ii) Prove that a2(b′2 − 4ac′) = (a1b2 − a2b1)2(B2 − 4AC), henc econcude

f(1, 0) = a = ±(a1b2 − a2b1) .

iii) Prove that

g(1, 0) = a′ = ±(a1c2 − a2c1)

Exercise 7.16. Recall that a group of order 4 is is isomorphic to either Z/2Z×Z/2Z,
or to Z/4Z. Determine the class group C(D) for D = −56, D = −68, D = −84,
D = −96. Do you see any connection between C(D) and when genus theory works?
Hint: to distinguish between Z/Z2×Z/2Z and Z/4Z you only need to check whether
some form is not properly equivalent to its inverse. Why? This is easy to see using
reduced forms.
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Exercise 7.17. It is known that any ternary quadratic form f(x, y, z) of determi-
nant det(f) = 1 is properly equivalent to x2 + y2 + z2. (See Corollary 2 [Cas08, p.
138].) Assuming this, show that there is no (nice!) notion of composition of integral
ternary quadratic forms of fixed determinant. Hint: we would (want to) have

(x2+y2+z2)(u2+v2+w2) = (B1(x, y, z;u, v, w))2+(B2(x, y, z;u, v, w))2+(B3(x, y, z;u, v, w))2 ,

where Bi(x, y, z;u, v, w) = a1,1xu+ · · ·+a3,3zw are integral bilinear forms. Consider
representations of 15 = 3× 5 by x2 + y2 + z2.

Exercise 7.18. Suppose D < 0 is a discriminant, and that q is a prime such that(
D
q

)
= 1. Show that

h(D) ≥ log

(
1

4
(|D|)

)
/ log q .

Hint: some g(x, y) of discriminant D represents q. If g has order M in the class
group, then qM is represented by the principal form. Put a bound on qM .

Remark: With slightly stronger analysis, one can prove the bound

h(D)− 1 ≥ log

(
1

4
(|D|+ 1)

)
/ log(q) .

For this, see the paper “Über die Klassenzahl imaginär-quadratischer Zahlkörper”,
Nagel 1922.



CHAPTER 8

The class group, and advanced aspects of genus theory

With the now established composition of binary quadratic forms, we can now study
genus theory in more detail. We will be able to prove some non-trivial facts about
the number of genera, and the number of classes per genera.

8.1. Relation between class group and genera

We can relate he class group C(D) to genus theory by way of the following map.
Recall the map χ : (Z/DZ)∗ → {±1 }, and the subgroup H of values represented
by the principal form. We also know that the values represented by other forms are
cosets of H in kerχ. Since all quadratic forms in a given class represent the same
values, we can define the following map

Φ: C(D)� kerχ/H ,

sending the class C to the coset of values it represents. This map is a group homo-
morphism:

Proof. Suppose that f 7→ H ′ and g 7→ H ′′. The composition f ◦g in the class group
represents values in H ′H ′′, as seen using the Gauss direct composition definition.
Thus Φ(f ◦ g) = HH ′′ = Φ(f)Φ(g). So Φ is a group homomorphism. �

Notice that Φ−1(H ′), for H ′ ∈ kerχ/H consists of all classes in a given genus, and
im Φ = kerχ/H may be identified with the set of genera.

Theorem 8.1. Let D be a discriminant. Then

• All genera of forms of discriminant D consist of the same number of classes
• The number of genera is a power of 2

Proof. For i) it is a standard fact in group theory that all ‘fibres’ (preimages
φ−1(x), x ∈ im(φ)) contain the name number of elements. The fibre φ−1(x) is a
coset of kerφ = φ−1(0), and we know cosets have the same cardinality.

For ii) we note that H contains all squares in (Z/DZ)∗, since principal form f(x, y) =
x2 + · · · takes value f(x, 0) = x2. Thus every element in kerχ/H has order ≤ 2,
whence

kerχ/H ∼= (Z/2Z)m

for some m, (by the classification of finitely generated abelian groups). Since
Φ(C(D)) = kerφ/H is the set of genera, we see that the number of genera is 2m, for
some m. �

Lecture 11
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8.2. Structure of C(+)(D)

With deeper understanding of the class group, we can produce further results about
the genera. We focus on the positive-definite case D < 0, and in particular on
D = −4n for simplicity. But most of the results hold for any discriminant.

Lemma 8.2. A reduced form of discriminant D < 0 has order ≤ 2 in the class
group if and only if b = 0, a = b or a = c.

Proof. We know that the inverse of f = (a, b, c) is the class of the improperly
equivalent form f ′ = (a,−b, c). The element f has order ≤ 2 if and only if f is
properly equivalent to its opposite.

Case 1: |b| < a < c. Then f ′ is also reduced, and so the two forms are equivalent if
and only if b = 0.

Case 2: a = b or a = c then our study of reduced forms shows that (a, b, c) and
(a,−b, c) are properly equivalent. �

Theorem 8.3. Let D be a discriminant. Write r for the number of odd primes
dividing D, and define µ as follows.

If D ≡ 1 (mod 4), then µ = r. Otherwise, D ≡ 0 (mod 4), so D = −4n with n > 0.
Define µ by the table

n µ
n ≡ 3 (mod 4) r
n ≡ 1, 2 (mod 4) r + 1
n ≡ 4 (mod 8) r + 1
n ≡ 0 (mod 8) r + 2

Then the class group C(+)(D) has exactly 2µ−1 elements of order ≤ 2.

Sketch. We treat the case D = −4n < 0 where n ≡ 1 (mod 4) only. Since D ≡
0 (mod 4), b is even. We count the number of reduced forms satisfying 2b = 0,
a = 2b or a = c. Then since n is odd, r is the number of prime divisors of n, and
we want to show µ = r + 1.

For 2b = 0, we require ac = n, with a, c relatively prime and a < c. There are 2r

choices for (a, c) relatively prime, and half of these have a < c. So there are 2r−1

reduced forms of type ax2 + cy2.

Now consider a = 2b or a = c. Write n = bk, where b, k coprime and 0 < b < k.
There are 2r−1 such b′s. Set c = 1

2
(b+ k). Then 2bx2 + 2bxy + cy2 has discrimiannt

−4n, and is reduced since n ≡ 1 (mod 4).

This gives 2r−1 reduced forms

2b < c : 2bx2 + 2by + cy2 is reduced

2b > c : 2bx2 + 2by + cy2 is equivalent to

cx2 + 2(c− b)xy + cy2 via (x, y) 7→ (−y, x+ y)

Latter is reduced since 2b > c⇒ 2(c− b) < c.

I claim this gives all reduced forms with a = 2b, or a = c. Thus we get 2r−1 +2r−1 =
2r elements of order ≤ 2. Hence µ = r + 1. �
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This also holds for D > 0, but requires much more work since reduced forms can be
properly equivalent amongst themselves, making it difficult to enumerate elements
of order ≤ 2.

8.3. Structure of the genera

Theorem 8.4. Let D be a discriminant.

i) There are 2µ−1 genera of forms of discriminant D, where µ is defined above.
ii) The principal genus (containing the principal form) consists of C(+)(D)2, the

subgroup of squares in C(+)(D). So every form in the principal genus arises by
squaring.

In order to sketch the proof of this theorem, we introduce a more efficient method
for determining when two forms are in the same genus. Let p1, . . . , pr be the distinct
odd primes dividing D. Define the following functions (‘characters’)

χi(a) =

(
a

pi

)
for a coprime to pi

δ(a) = (−1)(a−1)/2 for a odd

ε(a) = (−1)(a2−1)/8 for a odd

For D ≡ 1 (mod 4) we use the characters χ1, . . . , χr. For D ≡ 0 (mod 4), write
D = −4n, and use the following characters

n characters
n ≡ 3 (mod 4) χi
n ≡ 1 (mod 4) χi, δ
n ≡ 2 (mod 8) χi, δε
n ≡ 6 (mod 8) χi, ε
n ≡ 4 (mod 8) χi, δ
n ≡ 0 (mod 8) χi, δ, ε

The number of characters assigned is exactly the number µ given above. Then define
a map

Ψ: (Z/DZ)∗ → (Z/2Z)µ .

Lemma 8.5. The homomorphism Ψ: (Z/DZ)∗ → (Z/2Z)µ is surjective, and its
kernel is the subgroup H of values represented by the principal form. Thus

(Z/DZ)∗ ∼= (Z/2Z)µ .

Sketch of Theorem. For i) Since kerχ has index 2 in (Z/DZ)∗ (because (Z/DZ)∗
χ−→

Z/2Z is surjective, so (Z/DZ)∗/ kerχ ∼= Z/2Z), we find

kerχ/H
index 2
⊂ (Z/DZ)∗/H ,

so kerχ/H ∼= (Z/2Z)µ−1. Since kerχ/H is the set of genera, we conclude there are
2µ−1 such genera.
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To prove ii) We recall that Φ: C(+)(D) → kerχ/H ∼= (Z/2Z)µ−1 is a group homo-
morphism. Thus C(+)(D)2 ⊂ ker Φ, as φ(x2) = φ(x)2 = (±1)2 = 1. So we have a
map

C(+)(D)/C(+)(D)2 → (Z/2Z)µ−1 .

What is the order of C(+)(D)/C(+)(D)2? Notice C(+)(D)/C(+)(D)2 can be identified
with the elements of order ≤ 2 in C(+)(D), so it has order 2µ−1, by an earlier result.
But this map is surjective, since the original map Φ was. Since the two sides have
the same order, we see it is injective, and thus is a group isomorphism. �

Definition 8.6 (Genus, Gauss). Given a form f(x, y) of discriminant D, find a
number a coprime to D which f(x, y) represents. Evaluate the µ-tuple of characters
,as defined above. This gives the complete character of f(x, y).

Two forms are in the same genus, if they have the same complete character.

Lemma 8.7. The complete character depends only on the form f(x, y), and this
definition of genus agrees with the previous.

Proof. The complete character is the map Ψ(a), where Ψ: (Z/DZ)∗ → (Z/2Z)µ,
as before. The possible a’s lie in a coset H ′ of H in (Z/DZ). The complete character
is uniquely determined by the coset H. �

Example 8.8. We can use Gauss’s definition to determine the genera for D = −164.
Since D = −164 = −4× 41, has r = 1 odd prime divisor, n = 41 ≡ 1 (mod 4) and
have µ = r + 1. We assign characters χ1 =

( ·
41

)
, δ = (−1)(a−1)/2. We find

Form Represents χ1 δ
(1, 0, 41) 1 1 1
(2, 2, 21) 21 1 1
(3, -2, 14) 3 -1 -1
(3, 2, 14) 3 -1 -1
(5, -4, 9) 5 1 1
(5, 4, 9) 5 1 1
(6, -2, 7) 7 -1 -1
(6, 2, 7) 7 -1 -1

using (
3

41

)
=

(
41

3

)
(−1)(41−1)(3−1)/4 = −1(

5

41

)
=

(
41

5

)
(−1)(41−1)(5−1)/4 = 1(

7

41

)
=

(
41

7

)
(−1)(41−1)(7−1)/4 = −1 .

So we see that the following forms are in the same genus

{ (1, 0, 41), (2, 2, 21), (5,−4, 9), (5, 4, 9) } { (3,−2, 14), (3, 2, 14), (6,−2, 7), (6, 2, 7) } .

We compute that

ker(χ1, δ) = { 1, 5, 9, 21, 25, 33, 3745, 49, 57, 61, 73, 77, 81, 105, 113, 121, 125, 133, 141 } ⊂ (Z/164Z)∗
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meaning these are the values represented by the genera containing (1, 0, 41). There-
fore the other genus represents, say 3× these, giving

{ 3, 7, 11, 15, 19, 27, 35, 47, 55, 63, 67, 71, 75, 79, 95, 99, 111, 135, 147, 151 } .

Theorem 8.9. Let D be a discriminant. Then the following are equivalent

i) Every genus of forms of discriminant D contains a single class
ii) The class group C(+)(D) is isomorphic to (Z/2Z)m for some integer m

iii) The class number h(+)(D) equals 2µ−1

Sketch. i) implies ii) If every genus contains a single class, then C(+)(D)2 = { 1 }
as this is the principal genus. So every element of C(+)(D) has order ≤ 2. The only
finite abelian groups with this property are of the form (Z/2Z)m. (There can be no
Z-summand by by finiteness, and no Z/(> 2Z)-summand).

ii) implies iii) We know h(+)(D) = C(+)(D) = #(C(+)(D)/C(+)(D)2) ·#(C(+)(D)2) =
2µ−1 · 1.

iii) implies i). Using the above equation, h(+)(D) = 2µ−1 implies #(C(+)(D)2) = 1,
hence the principal genus (and so all genera) contain a single class. �

Theorem 8.10. Let f(x, y) and g(x, y) be primitive forms of discriminant D. The
the following are equivalent:

i) f(x, y) and g(x, y) are in the same genus, so represent the same values in
(Z/DZ)∗,

ii) f(x, y) and g(x, y) represent the same values in (Z/mZ)∗ for all non-zero m,
so congruence can never distinguish f and g,

iii) f(x, y) and g(x, y) are GL2(Q)-equivalent over Q via a matrix whose denomi-
nators are coprime to 2D.

Exercises

Exercise 8.11. Let p ≡ 1 (mod 8) be prime.

i) Let C(−4p) be the class group of discriminant D = −4p < 0. Use genus theory
to prove that

C(−4p) ∼= (Z/2aZ)×G ,

where #G is odd, and a ≥ 1. And hence 2 | h(−4p). Hint: recall the funda-
mental theorem for finitely generated abelian groups. How many elements of
order 2 are in C(−4p)?

ii) Use Gauss’s definition of genus to show that

2x2 + 2xy + ((p+ 1)/2)y2

is in the principal genus. Hint: it is easier to use the Jacobi symbol, not the
Legendre symbol.

iii) Use Theorem 8.4 to show C(−4p) has en element of order 4, hence conclude
4 | h(−4p).
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CHAPTER 9

Cubic reciprocity and p = x2 + 27y2

Lecture 12
12/07/2017
Exam!

Lecture 13
19/07/2017

Here we briefly sketch the introductory ideas involved in establishing results for
p = x2 + ny2, when genus theory begins to fail.

9.1. The ring Z[ω], ω = −1+
√
−3

3

The law of cubic reciprocity is connected closely with the ring Z[ω], where ω =
−1+

√
−3

2
. We state some of the important properties of this ring.

Definition 9.1 (Norm). The norm N : Z[ω]→ Z is defined by

N : Z[ω]→ Z
a+ bω 7→ (a+ bω)(a+ bω) = a2 − ab+ b2 ,

where · :
√
−3↔ −

√
−3 is the complex conjugate.

With the norm, one can define a division algorithm in Z[ω], which makes Z[ω] into
a Euclidean ring. In particular, it is a unique factorisation domain: every element
factors uniquely into a product of (suitably generalised) prime elements.

Proposition 9.2. The units (elements with multiplicative inverses) in Z[ω] are
±1,±ω,±ω2.

Proposition 9.3. The prime elements of Z[ω] are determined as follows. Let p be
a prime of Z, then

• If p = 3, then 1− ω is prime in Z[ω], and 3 = −ω2(1− ω)2.
• If p ≡ 1 (mod 3), then p = a2 − ab + b2, and π = a + bω is prime in Z[ω],

where π and π do not differ by a unit.
• If p ≡ 2 (mod 3), then p is prime in Z[ω].

This accounts for all primes of Z[ω].

Proposition 9.4. Given a prime π of Z[ω], then the quotient field Z[ω]/πZ[ω]
(compare with Z/pZ!) is a finite field with N(π) elements. Moreover N(π) = p, or
p2 for some prime integer p.

• If p = 3, or p ≡ 1 (mod 3), then N(π) = 3 and Z[ω]/πZ[ω] ∼= Z/pZ.
• If p ≡ 3, then N(π) = p2, and Z[ω]/πZ[ω] is a field with p2 elements, contain-

ing Z/pZ as a unique subfield.

Corollary 9.5. If π is prime in Z[ω], and π - α ∈ Z[ω], then

αN(π)−1 ≡ 1 (mod π)

because (Z[ω]/πZ[ω])∗ is a finite group with N(π)− 1 elements.

71
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9.2. Cubic residue symbol and cubic reciprocity

We can use these properties to define a generalised Legendre symbol,
(
α
π

)
3

dealing
with cubic residues. Let π be a prime of Z[ω] not dividing 3 (i.e. not associae to
1− ω). Then 3 | N(π)− 1, so

x = α(N(π)−1)/3

is a root of x3 ≡ 1 (mod π). By factoring x3− 1 = (x− 1)(x−ω)(x−ω2), it follows
that

α(N(π)−1)/3 ≡ 1, ω, ω2 (mod π) .

We define the Legendre symbol
(
α
π

)
3

to be the unique cube root of 1 such that

α(N(π)−1)/3 ≡
(
α

π

)
3

(mod π) .

(Compare with Euler’s criterion for the quadratic residue symbol!)

We get some properties, very similar to that for the quadratic residue symbol.

Proposition 9.6. The Legendre symbol
(
α
π

)
3

is multipliative in the top argument(
αβ

π

)
3

=

(
α

π

)
3

(
β

π

)
3

.

The Legendre symbol only depends on α (mod π), so α ≡ β (mod π) implies(
α

π

)
3

=

(
β

π

)
3

We can connect the Legendre symbol with cubic residues as follows. Since (Z[ω]/πZ[ω])
is a finite field, the group of units is (necessarily) cyclic. So we obtain the following.

Proposition 9.7. The following are equivalent

i) The congruence x3 ≡ α (mod π) has a solution in Z[ω]
ii) The symbol

(
α
π

)
3

= 1.

Proof. Both are equivalent to α(N(π)−1)/3 ≡ 1 (mod π). �

To state the law of cubic reciprocity, we also need the notion of a primary prime.
A prime π is called primary if π ≡ ±1 (mod 3). Exactly 2 of the associates
±π, πωπ,±ω2π are primary.

Theorem 9.8 (Cubic reciprocity). Let π and θ be primary primes in Z[ω] with
N(π) 6= N(θ). Then (

π

θ

)
3

=

(
θ

π

)
3

.
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Like quadratic reciprocity, there are supplementary laws for
(
ω
π

)
3

and
(

1−ω
π

)
3
. Namely

for π ≡ −1 (mod 3) (can assume this), write π = −1 + 3m+ 3nω. Then(
ω

π

)
3

= ωm+n(
1− ω
π

)
3

= ω2m

What does cubic reciprocity and Z[ω] have to do with cubic residues in Z/pZ, and
solving x3 ≡ a (mod p)?

If p = 3, then a3 ≡ a (mod 3), by Fermat’s little Theorem. So this the equation
always has a solution. If p ≡ 2 (mod 3), then 3 - p− 1 and so the map a 7→ a3 is an
automorphism of (Z/pZ)∗. So x3 ∼= a (mod p) also always has a solution.

For p ≡ 1 (mod 3), we have to deal with the cubic residue symbol. We have p = ππ
in Z[ω], and an isomorphism

(Z/pZ) ∼= (Z/[ω]/πZ[ω])

So for p - a, we get

x3 ≡ a (mod p) solvble in Z ⇐⇒
(
a

π

)
3

= 1.

9.3. Application to p = x2 + 27y2

We can now prove (or at least sketch the proof of) Euler’s conjecture about primes
of the form x2 + 27y2.

Theorem 9.9. Let p be a prime. Then p = x2 + 27y2 if and only if p ≡ 1 (mod 3)
and 2 is a cube modulo p.

Proof. We show both directions separately.

‘⇒’: Suppose that p = x2 + 27y2. Then, in particular p = x2 + 3(3y)2, so is of the
form a2 + 3b2, and hence p ≡ 1 (mod 3). So need to show 2 is a cube modulo p.

Let π = x+ 3
√
−3y, so that p = ππ, whence π is prime in Z[ω]. So

2 = x3 (mod p) ⇐⇒
(

2

π

)
3

= 1 .

Both 2 and x+ 3
√
−3y are primary primes, so cubic reciprocity implies(

2

π

)
3

=

(
π

2

)
3

.

Then (
π

2

)
3

≡ π(N(2)−1)/3 = π (mod 2) .

We need to show that π ≡ 1 (mod 2).

But π = x + 3
√
−3y = x + 3(1 + 2ω)y = x + 3y + 6ωy ≡ x + y (mod 2). Since

p = x2 + 27y2, x and y have opposite parity, so π ≡ 1 (mod 2).
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‘⇐’: Suppose that p ≡ 1 (mod 3) prime and 2 ≡ a3 (mod p). We can write p = ππ
in Z[ω], where π = a + bω. We can assume (by going to an associate), that π is
primary. So π = a+ 3bω, for some a, b ∈ Z.

Thus

4p = 4ππ = 4(a2 − 3ab+ 9b2) = (2a− 3b)2 + 27b2 .

Since 2 is a cube modulo p, we have that
(

2
π

)
= 1, so that cubic reciprocity says(

π
2

)
= 1, and hence π ≡ 1 (mod 2). So a + 3bω ≡ 1 (mod 2), so a is odd, and b is

even.

Then

p = (a− 3 b
2
)2 + 27( b

2
)2 ,

showing p has the required form. �

9.4. Artin reciprocity, and class field theory

This introduction of ‘cubic reciprocity’ and the similar biquadratic reciprocity for
x4 ≡ p (mod q), using Z[i], sparked the search for more and more general reciprocity
laws. This is the Artin reciprocity law, which relates ideals/ideal classes to elements
of the Galois group of an abelian extension L/K of number fields. One can use the
Artin symbol and the class fields to study how a prime ideal p in K factorises when
lifted to L. In particular the Hilbert class field H can be used to detects when a
prime ideal p factors into principal ideals K = Q(

√
−d), and hence give a condition

on when p = x2 +ny2. This detection is based on the factorisation modulo p, of the
polynomial f describing the extension how the H/K is generated.

One obtains the abstract result that

Theorem 9.10. Let D = −4n < 0 be a discriminant, then there exists a polynomial
f−4n(x) of degree h(−4n) such that for p - disc(f−4n)

p = x2 + ny2 ⇐⇒

{(
D
p

)
= 1 and,

f−4n(x) ≡ 0 (mod p) has a solution.

The polynomial f−4n(x) can be made explicit for each choice of n, but requires
advanced computational techniques.

Example 9.11. When D = −4 · 27, one finds that f−4·27(x) = x3 − 2 works,
and

(−27
p

)
=
(−3
p

)
= 1 ⇐⇒ p ≡ 1 (mod 3), recovering the result above. Notice

h(−4 · 27) = 3, since there are 3 reduced forms of discriminant D = −4 · 27 namely:

x2 + 27y2, 4x2 ± 2xy + 7y2

We also obtain the following condition for the other forms 4x2±2xy+72, by negating
the condition above

p = 4x2 ± 2xy + 7y2 ⇐⇒

{
p ≡ 1 (mod 3)

2 is not a cube modulo p.



EXERCISES 75

Exercises

Exercise 9.12. With cubic reciprocity, we can handle another one of Euler’s con-
jectures:

4p = x2 + 243y2 ⇐⇒

{
p ≡ 1 (mod 3) and

3 ≡ a3 (mod p)

Let p ≡ 1 (mod 3) be prime.

i) Use the proof of p = x2 + 27y2 to show that

4p = a2 + 27b2

where we can take a ≡ 1 (mod 3).
ii) Conclue that π = (a+ 3

√
−3b)/2 is a primary prime of Z[π], and that p = ππ.

iii) For π = (a+ 3
√
−3b)/2, show that the supplementary laws can be written as(

ω

π

)
3

= ω2(a+2)/3(
1− ω
π

)
3

= ω(a+2)/3+b

iv) Conclude
(

3
π

)
3

= ω2b.
v) Use this to prove Euler’s conjecture, above.





CHAPTER 10

Modular forms and theta series

10.1. Definition and properties of modular forms

Lecture 14
26/07/2017

A (classical) modular form for SL2(Z) is a ‘nice’ function f : H→ C, which satisfies
a certain symmetry law when transformed by γ ∈ SL2(Z).

Definition 10.1 (Upper half plane). The upper half-plane is

H := { z = x+ iy ∈ C | y > 0 } .

Definition 10.2 (Modular form of weight k). A function f : H → C is said to be
modular, of weight k the following conditions hold

i) f is holomorphic on H,
ii) For z ∈ H and γ = ( a bc d ), we have

f(γ · z) := f

(
az + b

cz + d

)
= (cz + d)kf(z) ,

and
iii) f is holomorphic at i∞.

We write Mk for the C-vector space of weight k modular forms.

Fact 10.3. Since f(z + 1) = f(z), using γ = T = ( 1 1
0 1 ), we see that any modular

form is Z-periodic. Hence it has a Fourier expansion:

f(z) =
∞∑
i=0

anq
n ,

where q = exp(2πiz). The expansion starts at n = 0, since f is ‘holomorphic at
z = i∞↔ q = 0’.

If a0 = 0, then the modular form f(z) is said to vanish at the cusp i∞. Then f(z)
is called a cusp form. Write Sk for the space of cusp forms (Spitzenformen).

Often, one defines a modular form by giving the coefficients an in the q-expansion.
This becomes important when we study quadratic forms using theta series. Regard-
less, these coefficients an hold a lot of arithmetic information.

Definition 10.4 (Eisenstein series). The Eisenstein series of weight 2k is defined
by

G2k(z) =
∑

(m,n)∈Z2\(0,0)

1

(m+ τ)2k
.

It is modular of weight 2k, for k ≥ 2.

77
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Fact 10.5. The q-expansion of G2k(z) has the following form

G2k(z) = 2ζ(2k)
(

1 +
(2πi)2k

(2k − 1)!ζ(2k)︸ ︷︷ ︸
rational

∞∑
n=1

σ2k−1(n)qn
)

,

where
σα(n) =

∑
d|n

dα

is the sum of α-th power of divisors function. Very arithmetical!

G4(z) = π4

45
(1 + 240

∞∑
n=1

σ3(n)qn)

G6(z) = 2π4

945
(1− 504

∞∑
n=1

σ5(n)qn)

...

For notational ease, one often writes

E2k(z) =
G2k(z)

2ζ(2k)
= 1 +

(2πi)2k

(2k − 1)!ζ(2k)︸ ︷︷ ︸
rational

∞∑
n=1

σ2k−1(n)qn

10.2. Applications of modular forms

Why should we care these objects? One reason is the ease by which one can extract
highly-non-trivial arithmetic identities by comparing the coefficients of relations
between modular forms. This is based on the following fact

Fact 10.6. The space Mk of weight k modular forms is finite dimensional. Specifi-
cally

dimCMk =

{
bk/12c k ≡ 2 (mod 12)

bk/12c+ 1 otherwise.

Moreover, any modular form is a polynomial in G4 and G6.

This means it is sufficient to compare only finitely many coefficients, to prove that
all coefficients are equal.

Example 10.7. Since dimCM8 = b8/12c + 1 = 1, we must have E2
4 = λE8 since

both are modular forms of weight 8. The leading coefficient of both sides is 1, so we
must have λ = 1. This gives the identity

(1 + 240
∞∑
n=1

σ3(n)qn)2 = 1 + 480
∞∑
n=1

σ7(n)qn .

Extracting the coefficient of qn from both sides, we obtain the non-trivial identity

σ7(n) = σ3(n) + 120
n−1∑
i=1

σ3(i)σ3(n− i)
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10.3. Theta series

To use modular forms in the study of quadratic forms, we need to generalise various
notions/weaken various conditions. We only require the transformation

f(γ · z) := f

(
az + b

cz + d

)
= (cz + d)kf(z)

hold for γ = ( a bc d ) ∈ Γ, a subgroup of SL2(Z). For example

Γ0(N) := { γ ∈ SL2(Z) | γ ≡ ( ∗ ∗0 ∗ ) (mod N) }
Γ1(N) := { γ ∈ SL2(Z) | γ ≡ ( 1 ∗

0 1 ) (mod N) } .

We can also generalise the transformation law allowed, to include an automorphic
factor ε(a, b, c, d), with absolute value 1, namely requiring

f(γ · z) := f

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)kf(z) .

Then we can have modular forms of odd weight, say if ε(a, b, c, d) = χ(d), some
character, and χ(−1) = −1.

Write
Mk(Γ, ε)

for the C-vector space of modular forms of weight k, for subgroup Γ, and automor-
phic factor ε.

Definition 10.8 (Theta series). Let Q be a positive-definite integral quadratic form
in n-variables. Let

rQ(m) = #{ x ∈ Zn | Q(x) = m }
be the representation numbers of Q. Then the theta series of Q is defined by

ΘQ(z) :=
∑
x∈Zn

qQ(x) =
∞∑
m=0

rQ(m)qm .

Fact 10.9 (Hecke, Schoenberg, Pfetzer, Shimura). Let Q be a positive-definite
integral quadratic form in n variabies, of level N and discriminant D. Then ΘQ is
modular on Γ0(N), of weight n/2, and character χ∆(·) =

(
∆
·

)
.

If Q has matrix A = 1
2
M , then discriminant D is defined as (−1)n det(A). The level

of Q is the smallest N such that NA−1 is a matrix with integer entries, and even
diagonals.

Example 10.10. The series

Θx2+y2(z) =
∞∑
n=0

rx2+y2(n)qn = 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + · · ·

is a modular form of weight 1, and character χ−4 =
(−4
·

)
on Γ0(4).

Let chi : (Z/NZ)∗ → C (extended to Z, in the natural way) be a character. Then
the Eisensteinseries Gk,χ defined by

Gk,χ(z) = a0 +
∞∑
n=1

∑
d|n

χ(d)dk−1

 qn
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is a modular form of weight k, and character χ on Γ0(N). Here a0 is some suitable
constant, which must be determined explicitly.

One finds

G1,χ−4(z) =
1

4
+
∑
n=1

(
∑
d|n

χ−4(d))qn =
1

4
+ q + q2 + q4 + 2q5 + q8 + · · ·

is a modular form of weight 1, and character χ−4 =
(−4
·

)
. One can prove that

M1(Γ0(4), χ−4) is a 1-dimensional vector space. Thus by comparing the constant
coefficient, we must have

Θx2+y2(z) = 4G1,χ−4(z) ,

and by comparing the qn coefficient, we find

rx2+y2(n) = 4
∑
d|n

(
−4

n

)
.

For an odd prime n = p, we see

rx2+y2(p) = 4(1 +
(−4
p

)
) ,

so that

p = x2 + y2 ⇐⇒
(
−4

p

)
= 1 ⇐⇒ p ≡ 1 (mod 4) ,

and we recover Fermat’s theorem, along with a precise count for the number of
representations. Namely for p ≡ 1 (mod 4), we have rx2+y2(p) = 8, i.e. up to ±, and
x↔ y, there is a unique way of writing p = x2 + y2.

Example 10.11. One can also study forms with higher arity. We find that

Θx21+x22+x23+x24
(z) = 1 + 8q + 24q2 + 32q3 + 24q4 + · · ·

is modular of weight 2, for Γ0(4). This space M2(Γ0(4)) is 2 dimensional, and a
basis is given by

G2(z)− 2G2(2z), G2(2z)− 2G2(4z) ,

where

G2(z) = − 1

24
+
∞∑
n=1

σ1(n)qn = − 1

24
+ q + 3q2 + 4q3 + 7q4 + 6q5 + · · · .

(Note: G2 itself is not modular, but the non-holomorphic combination G2(z) + 1
8πy

is otherwise modular of weight 2. The non-holomorphic part cancels in the above
combinations.)

One then finds

Θx21+x22+x23+x24
(z) = 8(G2(z)− 2G2(2z)) + 16(G2(2z)− 2G2(4z))

by comparing the first 2 Fourier coefficients. Hence, by comparing qn, we find

rx21+x22+x23+x24
(n) = 8σ1(n)− 32σ(n/4)︸ ︷︷ ︸

0 if 4 - n

= 8
∑
d|n
4-d

d
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In partiular, for n = p prime

rx21+x22+x23+x24
(p) = 8(1 + p) > 0 ,

so every prime can be written as the sum of 4 squares.

Corollary: every integer can be written as the sum of 4 squares, by using the identity

(a2
1 + a2

2 + a2
3 + a2

4)(b2
1 + b2

2 + b2
3 + b2

4) =

(a1b1 + a2b2 + a3b3 + a4b4)2 +

+ (a1b2 − a2b1 + a3b4 − a4b3)2 +

+ (a1b3 − a2b4 − a3b1 + a4b2)2 +

+ (a1b4 + a2b3 − a3b2 − a4b1)2 .

10.4. Class number ≥ 5

Class field theory works to give conditions for all forms of discriminant D, whenever
the class number h(D) is 1, 2, 3, 4 or 6. For class number 5, we cannot distinguish the
forms Q(x, y), Q2(x, y), Q3(x, y), Q4(x, y) (the exponent means composition, since
C(D) ∼= Z/5Z).

This first occurs forD = −47, where we have the forms (1, 1, 12), (2,±1, 6), (3,±1, 4).
We obtain 3 distinct Θ-series

Θ0 = Θx2+xy+12y2(z) = 1 + 2q + 2q4 + 2q9 + 4q12 + · · ·
Θ1 = Θ2x2+xy+6y2(z) = 1 + 2q2 + 2q6 + 2q7 + 2q8 + 2q9 + 2q12 + · · ·
Θ2 = Θ3x2+xy+4y2(z) = 1 + 2q3 + 2q4 + 2q6 + 2q8 + 2q12 + · · ·

These are modular of weight 1 for Γ0(47) with character ε−47 = (−47/ · ). An
‘obvious’ element of M1(Γ0(47), ε−47 is η(z)η(47z) where

η(z) = q1/24

∞∏
n=1

(1− qn)

is the Dedekind η-function. It turns out that

1

2
(Θ1 −Θ2) = η(z)η(47z) .

This means that the coefficient an of the modular form

η(z)η(47z) := q2

∞∏
n=1

(1− qn)(1− q47n) =:
∞∑
n=1

anq
n

This series already contains enough information to completely characterise the primes
represented by Q0, . . . , Q4 using the coefficient an. If we have

(−47
p

)
= 1, then p is

represented by exactly one of Q0, Q1, Q2. If ap = 0, it must be Q0 since this Θ-series
does not contribute to η(z)η(47z). If ap = 1 it must be Q1, and if ap = −1 it must
be Q2. So we obtain the criterion

p = x2 + xy + 12y2 ⇐⇒

{
(−47/p) = 1, and

ap = 0
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p = 2x2 ± xy + 6y2 ⇐⇒

{
(−47/p) = 1, and

ap = 1

p = 3x2 ± xy + 4y2 ⇐⇒

{
(−47/p) = 1, and

ap = −1

By reducing η(z)η(47z) modulo 47, we can obtain a more explicit version of this
criterion. Notice that

(1− q47n) ≡ (1− qn)47 (mod 47) ,

since 47 is prime. Thus

η(z)η(47z) ≡ q2

∞∏
n=1

(1− qn)48 (mod 24) .

But the function

∆(z) := q
∞∏
n=1

(1− qn)24 = η(z)24

is a ‘well-known’ modular form (actually cusp form) called the discriminant function.
It is a weight 12 modular form for SL2(Z) with no character. Its Fourier coefficients
define the Ramanujan-τ function. This τ(n) function which satisfies some amazing,
very deep properties

• τ is multiplicative: gcd(m,n) = 1 implies τ(mn) = τ(m)τ(n).
• τ(pm+1) = τ(p)τ(pm)− p11τ(pm−1)
• |τ(p)| ≤ 2n11/2 or more generally |τ(n)| ≤ σ0(n)n11/2.

The first two properties follow because ∆(z) is a ‘Hecke-eigenform’. The third
property is a related to deep results called the Weil conjecture’s, concerned with
zeta functions of curves/varieties over finite fields. This was proven by Deligne.

A table of the first few values is given below.

n 1 2 3 4 5 6 7 8 9 10
τ(n) 1 -24 252 -1472 4830 -6048 -16744 84480 -113643 -115920

So by reducing modulo 47, we obtain

η(z)η(47z) ≡ ∆2(z) (mod 47)

an ≡
∑
i+j=n

τ(i)τ(j) (mod 47) ,

and so can rewrite the condition on ap = −1, 0, 1 in terms of the following ‘convolu-
tion’ of τ with itself: ∑

i+j=p

τ(i)τ(j) ≡ −1, 0, 1 (mod 47) .

Alternatively, we can read this as a congruence theorem for τ , the value depending
on which quadratic form represents p. Modulo any other prime, this convolution
seems to take all values in all residue classes!
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Exercises

Exercise 10.12. Recall that Mk denotes the space of weight k modular forms.

i) Show that Mk is a C-vector space.
ii) If k is odd, show that Mk = { 0 }. Hint: consider ( −1 0

0 −1 ).
iii) Let f ∈Mk and g ∈M` be two modular forms. Show that fg is also a modular

form, and that fg ∈Mk+`.

Remark: Don’t worry too much about the holomorphic at i∞ condition!

Exercise 10.13. Find a relation between E4E6 and E10. Hence derive an identity
for σ9 as a ‘convolution’ of σ3 and σ5 of the form

σ9(n) = aσ5(n) + bσ3(n) + c

n∑
i=1

σ3(i)σ5(n− i) .

(Here a, b, c are certain rational numbers you should find.)
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