
Primes - Problem Sheet 2 - Solutions

Elementary proofs for Fermat’s claims

Setup

Q1) Find a generalisation of the identity

(x2 + y2)(z2 + w2) = (xz ± yw)2 + (xw ∓ yz)2

to

(x2 + ny2)(z2 + nw2) = (· · · )2 + n(· · · )2 ,

and

(ax2 + cy2)(az2 + cw2) = (· · · )2 + ac(· · · )2 .

Solution: A nice ‘trick’ to find these identities comes from factoring over C.
We have

x2 + y2 = (x+ iy)(x− iy) = (x+ iy)(x+ iy) .

So

(x2 + y2)(w2 + z2) = (x+ iy)(w + iz)(x+ iy)(w + iz)

= ((xw − yz) + i(xz + yw))((xw − yz) + i(xz + yw)

= (xw − yz)2 + (xz + yw)2

(The other sign comes from grouping (x+ iy)(w − iz) instead.)
So we obtain

(x2 + ny2)(w2 + nz2) = (xw ± nyz)2 + n(xz ∓ yw)2 .

Then we can write

ax2 + cy2 = a(x2 +
c

a
y2) ,

and use the above to get

(ax2 + cy2)(az2 + cw2) = (axw ± cyz)2 + ac(xz ∓ yw)2

Recall the following lemma

Lemma 1. Suppose N = a2+b2 is a sum of two relative prime squares gcd(a, b) = 1.
If q = x2+y2 is a prime divisor of N , then N/q is also a sum of two relatively prime
squares.

Q2) Formulate a version of the above lemma when a prime q = x2 + ny2 divides
N = a2 + nb2, with n a positive integer. Show also the statement holds when
q = 4 and n = 3.
Solution: The ‘obvious’ candidate generalisation should be: Suppose N =
a2 + nb2, gcd(a, b) = 1. If q = x2 + ny2, gcd(x, y) is a prime divisor of N , then
N/q = c2 + nd2, for some gcd(c, d) = 1.

The proof starts in the same way as for Lemma 2.5. We see that

q | x2N − a2q = n(xb− ay)(xb+ ay) .
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If q | xb − ay or q | xb + ay, then without loss of generality, we can change
a↔ −a. So assume q | xb− ay, and continue as before. But it might be that
q | n, for example 5 | 30 = 52 + 5× 12. In this case, we obtain

q = x2 + ny2 | n ,

so write n = αq, with α ≥ 1. There is no solution with y = 0, so y ≥ 1, and

q = x2 + ny2 ≥ ny2 ≥ n ≥ αq .

Thus all ≥ are =, meaning α = 1, and q = n.
Now if we have N = a2 + nb2 = a2 + qb2, then q | N implies q | a2 implies

q | a. So

N/q = b2 + q(a/q)2

where a/q ∈ Z.

If we take q = 4 (not prime!), and n = 3, we get to 4 | 3(xb− ay)(xb+ ay).
But since 4 = x2 + 3y2, gcd(x, y) implies x = y = 1, we get 4 | 3(b− a)(b+ a).
The key step is to show that 4 | b− a or 4 | b+ a. But this must happen, else
2 | b − a and 4 - b − a and 2 | b + a and 4 - b + a. So a − b = 2k, a + b = 2l,
with k, l odd. Then a = k + l, b = k − l which gives gcd(a, b) ≥ 2.

Q3) Suppose a prime p divides N = a2 + nb2, gcd(a, b) = 1. Is it true that
p = x2 + ny2, for some gcd(x, y) = 1? Give a proof or a counterexample.
What does this say about our ability to complete the Descent step in general?
Solution: It is not true: p = 2 divides 6 = 12 + 5× 12, yet 2 6= x2 + 5y2. So
the descent step fails in general.

Fermat’s x2 + 2y2 claim

In the following exercises you will prove Fermat’s theorem for primes p = x2 + 2y2.

Q4) Suppose that prime p = x2 + 2y2. By reducing modulo 8, show that p = 2 or
p ≡ 1, 3 (mod 8).
Solution: The squares modulo 8 are 02, (±1)2, (±2)2, (±3)2, (±4)2 ≡ 0, 1, 4 (mod 8).
So

p = x2 + 2y2 (mod 8) x = 0 1 4
y = 0 0 1 4

1 2 3 6
4 0 1 4

So p ≡ 0, 1, 2, 3, 4, 6 (mod 8). The only prime which can be 2, 4, 6 (mod 8) is
p = 2. So we get

p = 2 or p ≡ 1, 3 (mod 8) .

Q5) (Descent for x2 + 2y2) Suppose prime p divides x2 + 2y2, with gcd(x, y) = 1.
Adapt the proof of Fermat’s two-squares theorem (Theorem 2.4) to show that
p = a2 + 2b2. Hint: Q2) might be useful.
Solution:
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Setup: Suppose that p | a2 + 2b2 is an odd prime dividing N = a2 + 2b2,
gcd(a, b) = 1. We can assume |a|, |b| < 1

2
p by changing a → a′ = a + pk and

b→ b′ = b+p`. Then divide by d = gcd(a′, b′) > 1. Certainly p - d2, otherwise
p | |a|, |b| < 1

2
p giving a = b = 0.

This means we can assume p | N = a2 + 2b2 with gcd(a, b) = 1 and N ≤
1
4
p2 + 2

4
p2 = 3

4
p2.

Any prime divisor q 6= p of N is < p. Otherwise it is > p, and N > pq > p2,
contradicting the bound. Also p2 - N , so p only appears with exponent 1.

Descent: Suppose all such qi | N can be written as x2i +2y2i . Repeatedly apply
Q2) to write p = N/

∏
qni
i as x2 + 2y2.

So if p is not x2 + 2y2, then we can produce a smaller counter example
q < p. This leads to an infinite decreasing sequence of prime numbers, which
is a contradiction. Thus p = x2 + 2y2.

Q6) (Reciprocity for x2 + 2y2) Suppose prime p ≡ 1, 3 (mod 8). Show that p |
x2 + 2y2, for some gcd(x, y) = 1, by completing the following steps.
i) For p ≡ 1 (mod 8), make use of the identity:

x8k − 1 = (x4k − 1)[(x2k − 1)2 + 2x2k]

Solution: If p = 8k + 1, then (Z/pZ)∗ has order 8k, and so every element
β ∈ (Z/pZ)∗ solves the above equation. The first factor can only have 4k
solutions, so the second factor must have a solution. Let β be a solution to

(x2k − 1)2 + 2x2k

Choose b ≡ b (mod p), with b > 0. Then p | (b2k − 1)2 + 2(bk)2. We also
have that gcd(b2k − 1, bk) = gcd(−1, bk) = 1.

ii) For p ≡ 3 (mod 8), argue as follows.
a) (Optional) Show descent works for x2 − 2y2.

Solution:

Setup: Suppose p is an odd prime dividing N = a2−2b2. We can assume
|a|, |b| ≤ 1

2
p. Dividing by gcd(a, b) means we can assume

p - N = a2 − 2b2

where |N | ≤ 1
4
p2 + 2

4
p2 = 3

4
p2.

Any prime divisor q 6= p of |N | is < p. Otherwise it is > p, and then
|N | ≥ pq > p2, contradicting the bound. Similarly p2 - N , so p appears
with exponent 1.

Descent: Suppose that all qi | N can be written as x2i − 2y2i . One can
check that the proof of item Q2) goes through since n = 2 is prime. So
repeatedly apply this to write p = N/

∏
qni
i as x2 − 2y2.

So if p is not x2 − 2y2, we can produce a smaller counter example q < p.
This leads to an infinite decreasing sequence of primes numbers, which
is a contradiction. Thus p = x2 − 2y2.

b) Use descent for x2 − 2y2, to show p does not divide any N = x2 − 2y2.
Conclude that 2 6≡ a2 (mod p).
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Solution: Assuming descent works for x2 − 2y2, and that p | N =
x2−2y2, we conclude that p = x2−2y2. But reducing modulo 8 shows that
p = x2 − 2y2 implies p ≡ 1, 7 (mod 8). This contradicts the assumption
that p ≡ 3 (mod 8). If 2 ≡ a2 (mod p), then we can write p | a2− 2× 12,
which we have just shown is not possible. Hence 2 6≡ � (mod p).

c) Show p does not divide any N = x2 + y2.
Solution: From Fermat, we know p | x2 + y2 implies p = x2 + y2 implies
p ≡ 1 (mod 4). So p ≡ 1, 5 (mod 8). But we assumed p ≡ 3 (mod 8).

d) Write p = 2m+ 1, and show that no two of the following are congruence,
modulo p

12, 22, . . . ,m2,−12,−22, . . . ,−m2 .

Hence conclude exactly one of −a and a is a square, modulo p. In
particular, show −2 is a square, modulo p.
Solution: If a2 ≡ b2 (mod p), a 6= b, then a ≡ ±b (mod p). But a ≡
−b (mod p) implies a + b ≡ 0 (mod p) which is not possible since 1 ≤
a, b ≤ m. On the other hand if a ≡ b, then we get a = b, since 1 ≤ a, b ≤
m and p = 2m + 1. So a, b are not distinct. Same words for −a2 and
−b2.
Now if a2 ≡ −b2, then we get p | a2 + b2. Write d = gcd(a, b), then
p | d2(a20 + b20). We can’t have p | d, as p - a. So p | a20 + b20, with
gcd(a0, b0) = 1. We showed above this is impossible.
So the set ±12,±22, . . . ,±m2 is exactly 1, 2, . . . , 2m, all non-zero residues
modulo p. So ±a matches with ±n2, some n. If a 6= n2, then −a = n2.
So one of ±a is a square.
From earlier we know 2 is no a square modulo p. Hence −2 must be a
square modulo p.

e) Show that p | x2 + 2y2, with some gcd(x, y) = 1. (Take x = 1.)
Solution: Write −2 = a2 (mod p), then p | a2 + 2 · 12.

f) (Optional/research) Is it possible to more directly show p ≡ 3 (mod 8)
divides some x2+2y2, gcd(x, y) = 1? For example, by using a polynomial
identity like above?

Conclude that Fermat’s claim about p = x2 + 2y2 holds.

Q7) Find (with proof!) a condition on when a positive integer N can be written in
the form N = x2 + 2y2, x, y ∈ Z.
Solution: The proof is essentially the same as for N = x2 + y2. We obtain

N = x2 + 2y2

if and only if the primes ≡ 5, 7 (mod 8) dividing N appear with even exponent.

Fermat’s x2 + 3y2 claim

In the following exercises you will prove Fermat’s theorem for primes p = x2 + 3y2.

Q8) Suppose that prime p = x2 + 3y2. By reducing modulo 3, show that p = 3, or
p ≡ 1 (mod 3).
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Solution: The squares modulo 3 are 02, (±1)2 = 0, 1 (mod 3). So p ≡ x2 =
0, 1 (mod 3). The only prime which can be ≡ 0 (mod 3) is 3. So p = 3 or
p ≡ 1 (mod 3).

Q9) (Descent for x2 + 3y2) Suppose prime p divides x2 + 3y2, with gcd(x, y) = 1.
Show that p = a2 + 3b2. Warning: the descent step doesn’t work for p = 2, so
if p 6= a2 + 3b2 you need to produce an odd prime q < p not of this form.
Solution:

Setup: Suppose p is an odd prime dividing N = a2+3b2. Can assume |a|, |b| <
1
2
p, so N < 1

4
p2 + 3

4
p2 = p2.

Any prime divisor q 6= p of N is < p, else N > pq ≥ p2, contradicting the
bound. Also p2 - p, since N < p2.

Descent: Notice that 2 | 12 + 3× 12, but 2 6= x2 + 3y2, so the descent step fails
here. So if descent fails for p, we must produce an odd prime q < p for which
is also fails.

I claim that if 2 | a2 + 3b2, gcd(a, b) = 1 then actually 4 | a2 + 3b2. We
have a2 + b2 = (a + b)2 = 0 (mod 2). So a ≡ b (mod 2). Now, a, b cannot
both be even, so they must both be odd. Reduce modulo 4, and we see
a2 + 3b2 ≡ a2 − b2 = 12 − 12 = 0 (mod 4). So in a2 + 3b2, 2 must appear to
even power: we can repeatedly divide out 4 using ??. This only stops when
the result is odd.

Suppose that all odd primes qi < p are of the form x2i + 3y2i . Then by
repeatedly applying item Q2), including the case q = 4, we can write

p = N/(4a
∏

qni
i )

as x2 +3y2. So if p 6= x2 +3y2, one of the primes odd primes qi < p is a smaller
counter example. This leads to an infinite decreasing sequence of odd primes,
a contradiction. Hence p = x2 + 3y2.

Q10) (Reciprocity for x2+3y2) Suppose prime p ≡ 1 (mod 3). Show that p | x2+3y2,
for some gcd(x, y) = 1. Hint:

4(x3k − 1) = (xk − 1)[(2xk + 1)2 + 3] .

Solution: For p = 3k + 1, then (Z/pZ)∗ has order 3k, so every element
β ∈ (Z/pZ)∗ is a solution to the equation. (Notice that p - 4, so 4 6≡ 0 (mod p).
The first factor has k solutions, so the second factor must have 2k solutions.
Let β be a solution. Then

p | (2βk + 1)2 + 3 · 12

and we have gcd(2βk + 1, 1) = 1.

Conclude that Fermat’s claim about p = x2 + 3y2 holds.

Q11) Find (with proof!) a condition on when a positive integer N can be written in
the form N = x2 + 3y2, x, y ∈ Z.
Solution: The proof is essentially the same as for N = x2 + y2. We obtain

N = x2 + 3y2
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if and only if the primes p ≡ 2 (mod 3) (including p = 2) dividing N appear
with even exponent.
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