Primes - Problem Sheet 2 - Solutions

Elementary proofs for Fermat’s claims

Setup
Q1) Find a generalisation of the identity
(22 + ) (2% + w?) = (22 £ yw)? + (2w F y2)?
to
(& ) ) = () e
and
(az® + cy?)(az? + cw?®) = (- )* +ac(--+ ).
Solution: A nice ‘trick’ to find these identities comes from factoring over C.
We have

2y’ = (v +ay)(z —ay) = (¢ +iy)(z +iy) .

So
(@® + ) (w? + 2°) = (x + iy) (w + i2) (z + iy) (w + i2)

= ((zw —yz) +i(zz + yw)) (2w — yz) + i(zz + yw)
= (zw — y2)* + (22 + yw)?
(The other sign comes from grouping (z + iy)(w — iz) instead.)
So we obtain
(2% + ny?) (w? + n2?) = (vw £ nyz)* + n(zz Fyw)?.
Then we can write
ax® + cy® = a(z® + 23/2) ,
and use the above to get
(az® + cy?)(az® + cw?) = (azw £ cyz)® + ac(zz F yw)?
Recall the following lemma

Lemma 1. Suppose N = a*+b* is a sum of two relative prime squares ged(a,b) = 1.
If ¢ = 2® +y? is a prime divisor of N, then N/q is also a sum of two relatively prime
squares.

Q2) Formulate a version of the above lemma when a prime ¢ = 22 + ny? divides
N = a® + nb?, with n a positive integer. Show also the statement holds when
qg=4and n = 3.

Solution: The ‘obvious’ candidate generalisation should be: Suppose N =
a’+nb?, ged(a,b) = 1. If ¢ = 22 + ny?, ged(z, y) is a prime divisor of N, then
N/q = ¢* + nd?, for some ged(c,d) = 1.

The proof starts in the same way as for Lemma 2.5. We see that

q| 2*N — a*q = n(zb — ay)(zb + ay) .
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If g | xb — ay or q | zb + ay, then without loss of generality, we can change
a <> —a. So assume q | b — ay, and continue as before. But it might be that
q | n, for example 5 | 30 = 5% + 5 x 12, In this case, we obtain

q=a>+ny’|n,
so write n = aq, with a > 1. There is no solution with y =0, so y > 1, and
q:x2+ny2 2ny2 >n>aq.

Thus all > are =, meaning o = 1, and ¢ = n.
Now if we have N = a? + nb? = a® + ¢b?, then ¢ | N implies ¢ | a® implies
q|a. So

N/q=b"+q(a/q)?

where a/q € Z.

If we take ¢ = 4 (not prime!), and n = 3, we get to 4 | 3(zb — ay)(xzb + ay).
But since 4 = 2 + 3y?, ged(z,y) implies z = y = 1, we get 4 | 3(b— a)(b+ a).
The key step is to show that 4 | b — a or 4 | b+ a. But this must happen, else
2|b—aand44b—aand2|b+aand41b+a. Soa—b=2k, a+b=2I,
with k,l odd. Then a = k + [, b = k — [ which gives gcd(a,b) > 2.

Q3) Suppose a prime p divides N = a* + nb?, ged(a,b) = 1. Is it true that
p = 22 + ny?, for some ged(x,y) = 1?7 Give a proof or a counterexample.
What does this say about our ability to complete the Descent step in general?
Solution: It is not true: p = 2 divides 6 = 12 +5 x 12, yet 2 # 22 + 53%. So
the descent step fails in general.

Fermat’s 2% + 2y? claim

In the following exercises you will prove Fermat’s theorem for primes p = 22 + 2y%.

Q4) Suppose that prime p = 22 4+ 2y%. By reducing modulo 8, show that p = 2 or

p=1,3(mod 8).
Solution: The squares modulo 8 are 02, (1)2, (£2)?, (£3)?, (£4)? = 0,1,4 (mod 8).
So
p = 2%+ 2y? (mod 8) ‘ =01 4
Yy = 0 0 1 4
1 2 3 6
4

Sop=0,1,2,3,4,6 (mod 8). The only prime which can be 2,4,6 (mod 8) is
p = 2. So we get

p=2orp=1,3(mod 8).

Q5) (Descent for 2% + 2y*) Suppose prime p divides z? + 2y?, with ged(x,y) = 1.
Adapt the proof of Fermat’s two-squares theorem (Theorem 2.4) to show that
p = a® + 2b?. Hint: might be useful.
Solution:
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Setup: Suppose that p | a® + 2b* is an odd prime dividing N = a? + 20,
ged(a,b) = 1. We can assume |al, [b| < 3p by changing a — @’ = a + pk and
b — U = b+ pl. Then divide by d = ged(a’, V') > 1. Certainly p t d?, otherwise
p|lal,b| < 3p giving a = b= 0.

This means we can assume p | N = a* + 2b? with ged(a,b) = 1 and N <
1,2 2,2 _ 32
b TP = ap

Any prime divisor ¢ # p of N is < p. Otherwise it is > p, and N > pq > p?,
contradicting the bound. Also p? 1 N, so p only appears with exponent 1.

Descent: Suppose all such ¢; | N can be written as x? +2y?. Repeatedly apply
to write p = N/ [ ¢" as z* + 2y>.

So if p is not 22 + 2y?, then we can produce a smaller counter example
g < p. This leads to an infinite decreasing sequence of prime numbers, which
is a contradiction. Thus p = 22 + 2y°.

Q6) (Reciprocity for z% + 2y*) Suppose prime p = 1,3 (mod 8). Show that p |
x? + 2y, for some ged(z,y) = 1, by completing the following steps.
i) For p =1 (mod 8), make use of the identity:

:L‘Sk — 1= (Z[Z4k o 1)[(1,21@ o 1)2 + ZZE%]

Solution: If p = 8k + 1, then (Z/pZ)* has order 8k, and so every element
B € (Z/pZ)* solves the above equation. The first factor can only have 4k
solutions, so the second factor must have a solution. Let § be a solution to

(ka o 1)2 4 21,2]{:

Choose b = b (mod p), with b > 0. Then p | (b°* — 1)% 4 2(b*)?. We also
have that ged(b* — 1,0%) = ged(—1,0%) = 1.

ii) For p = 3 (mod 8), argue as follows.
a) (Optional) Show descent works for 22 — 2y
Solution:

Setup: Suppose p is an odd prime dividing N = a? —2b*. We can assume
|al, [b] < p. Dividing by ged(a, b) means we can assume

p{ N =a*— 20

where [N| < 1p? 4 2p* = 3p?,

Any prime divisor ¢ # p of [N| is < p. Otherwise it is > p, and then
|IN| > pg > p?, contradicting the bound. Similarly p? { N, so p appears
with exponent 1.

Descent: Suppose that all ¢; | N can be written as x? — 2y?. One can
check that the proof of goes through since n = 2 is prime. So
repeatedly apply this to write p = N/ ] ¢ as 22 — 2y

So if p is not 2 — 2y?, we can produce a smaller counter example ¢ < p.
This leads to an infinite decreasing sequence of primes numbers, which
is a contradiction. Thus p = 22 — 232

b) Use descent for 22 — 242, to show p does not divide any N = x? — 232
Conclude that 2 # a? (mod p).
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Solution: Assuming descent works for x? — 2y%, and that p | N =
22 —2y?, we conclude that p = 22—2y?. But reducing modulo 8 shows that
p = x? — 2y? implies p = 1,7 (mod 8). This contradicts the assumption
that p = 3 (mod 8). If 2 = a? (mod p), then we can write p | a® — 2 x 12,
which we have just shown is not possible. Hence 2 # [ (mod p).

c¢) Show p does not divide any N = z? + 3.
Solution: From Fermat, we know p | 22 + 3 implies p = 2% + y? implies
p=1(mod 4). Sop=1,5(mod 8). But we assumed p = 3 (mod 8).

d) Write p = 2m+ 1, and show that no two of the following are congruence,

modulo p
12,22 ... om?%, —12,=2% ... —m?.

Hence conclude exactly one of —a and a is a square, modulo p. In
particular, show —2 is a square, modulo p.
Solution: If a®* = b* (mod p), a # b, then a = +b (mod p). But a =
—b (mod p) implies a + b = 0 (mod p) which is not possible since 1 <
a,b < m. On the other hand if a = b, then we get a = b, since 1 < a,b <
m and p = 2m + 1. So a,b are not distinct. Same words for —a® and
—b2.
Now if a? = —b?, then we get p | a® + b%. Write d = ged(a,b), then
p | d*(a +b3). We can’t have p | d, as p f a. So p | a3 + b3, with
ged(ag, by) = 1. We showed above this is impossible.
So the set £12, £22, ..., +m? is exactly 1,2, ..., 2m, all non-zero residues
modulo p. So #a matches with +n?, some n. If a # n?, then —a = n?.
So one of *a is a square.
From earlier we know 2 is no a square modulo p. Hence —2 must be a
square modulo p.

e) Show that p | 22 4+ 2y?, with some ged(z,y) = 1. (Take z = 1.)
Solution: Write —2 = a? (mod p), then p | a® + 2 - 12.

f) (Optional/research) Is it possible to more directly show p = 3 (mod 8)
divides some x2+2y?, ged(x,y) = 1?7 For example, by using a polynomial
identity like above?

Conclude that Fermat’s claim about p = x? + 2% holds.

Q7) Find (with proof!) a condition on when a positive integer N can be written in
the form N = 22 + 2y?, z,y € Z.
Solution: The proof is essentially the same as for N = 22 + y*. We obtain

N = 2%+ 2°

if and only if the primes = 5,7 (mod 8) dividing N appear with even exponent.

Fermat’s 22 + 3y? claim

In the following exercises you will prove Fermat’s theorem for primes p = x? + 3y2.

Q8) Suppose that prime p = 2? + 3y*. By reducing modulo 3, show that p = 3, or
p =1 (mod 3).
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Solution: The squares modulo 3 are 0%, (+1)? = 0,1 (mod 3). So p = 2% =
0,1 (mod 3). The only prime which can be = 0 (mod 3) is 3. So p = 3 or
p =1 (mod 3).

Q9) (Descent for x? + 3y?) Suppose prime p divides 2 + 3y?, with ged(x,y) = 1.
Show that p = a? 4 3b*>. Warning: the descent step doesn’t work for p = 2, so
if p # a® + 3b* you need to produce an odd prime g < p not of this form.
Solution:

Setup: Suppose p is an odd prime dividing N = a?+3b?. Can assume |a], |b] <
ip,so N < 1p° + 3p? = p.
Any prime divisor ¢ # p of N is < p, else N > pq > p?, contradicting the

bound. Also p? { p, since N < p*.

Descent: Notice that 2 | 1243 x 12, but 2 # 2 + 3y?, so the descent step fails
here. So if descent fails for p, we must produce an odd prime ¢ < p for which
is also fails.

I claim that if 2 | a® + 30, ged(a,b) = 1 then actually 4 | a* + 3b*>. We
have a® + b* = (a + b)? = 0 (mod 2). So a = b(mod 2). Now, a,b cannot
both be even, so they must both be odd. Reduce modulo 4, and we see
a?+3b* =a? —b* = 12— 12 = 0 (mod 4). So in a® + 3b?, 2 must appear to
even power: we can repeatedly divide out 4 using ?7. This only stops when
the result is odd.

Suppose that all odd primes ¢; < p are of the form z? + 3y?. Then by

repeatedly applying fitem Q2)| including the case ¢ = 4, we can write
p=N/E]]a")

as 22+ 3y?. Soif p # 22+ 3y?, one of the primes odd primes ¢; < p is a smaller
counter example. This leads to an infinite decreasing sequence of odd primes,
a contradiction. Hence p = 22 + 332

Q10) (Reciprocity for x?+3y?*) Suppose prime p = 1 (mod 3). Show that p | 22+ 3y?,
for some ged(z,y) = 1. Hint:
4% — 1) = (aF — D[22 +1)* 4 3]

Solution: For p = 3k + 1, then (Z/pZ)* has order 3k, so every element
B € (Z/pZ)* is a solution to the equation. (Notice that p 14, so4 # 0 (mod p).
The first factor has k£ solutions, so the second factor must have 2k solutions.
Let 3 be a solution. Then

p| (28" +1)*+3-1°
and we have ged(26% +1,1) = 1.
Conclude that Fermat’s claim about p = 22 + 33? holds.

Q11) Find (with proof!) a condition on when a positive integer N can be written in
the form N = 22 + 3y, x,y € Z.
Solution: The proof is essentially the same as for N = 22 + y*. We obtain

N = 2%+ 3y°
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if and only if the primes p = 2 (mod 3) (including p = 2) dividing N appear
with even exponent.



	Elementary proofs for Fermat's claims
	Setup
	Fermat's  x2 + 2y2  claim
	Fermat's  x2 + 3y2  claim


