Primes - Problem Sheet 3

Quadratic residues and quadratic reciprocity

- Q1) Use (the supplements to) Quadratic Reciprocity to find congruence conditions on p such that $\left(\frac{-2}{n}\right) = 1$. This gives an alternate proof of the *Reciprocity* step for $p \mid x^2 + 2y^2$. How does this compare with Problem Sheet 2, Question 6?
- Q2) Find congruence conditions on p such that $\left(\frac{a}{p}\right) = 1$ for i) $a = \pm 5$,
 - ii) $a = \pm 7$,
 - iii) $a = \pm 6$,
 - iv) $a = \pm 10$,
 - v) $a = \pm 21$.

Hence state the corresponding *Reciprocity* steps for these $x^2 + ny^2$, in these cases.

- Q3) (Easy cases of Dirichlet's theorem on primes in arithmetic progressions)
 - i) By directly imitating Euclid's classical proof that there are infinitely many primes, show that there are infinite many primes $p \equiv 3 \pmod{4}$. Hint: consider $N_k = 2^2 p_1 p_2 \dots p_k - 1$, where $p_1 = 3, p_2 = 7, \dots$ are the primes of the form 4n + 3.
 - ii) By using Lemma 3.8, with n = 1, adapt the above proof, to show there are infinitely many primes $p \equiv 1 \pmod{4}$.
 - iii) Show that there are infinitely many primes $p \equiv 1 \pmod{3}$ and infinitely many primes $p \equiv 2 \pmod{3}$.
- Q4) (Primes of the form $x^2 2y^2$) i) Show directly that the descent step holds for $x^2 - 2y^2$.
 - ii) Use quadratic reciprocity to determine when $p \mid x^2 2y^2$.
 - iii) Give a condition on when a prime $p = x^2 2y^2$.
- Q5) In this exercise you will evaluate $\left(\frac{2}{n}\right)$ in a different way, using Euler's criterion. Consider $(\mathbb{Z}/p\mathbb{Z})$, and suppose we extend it to $F = (\mathbb{Z}/p\mathbb{Z})[\zeta_8]$ which includes (the image of) $\zeta_8 = e^{2\pi i/8}$, a primitive 8-th root of 1. Then any element $x \in F$ can be written

$$x \equiv \sum_{i=0}^{7} a_i \zeta_8^i \pmod{p},$$

with addition and multiplication given in the 'natural ways' using the rule $\zeta_8^8 = 1$. (Similar to $\mathbb{C} = \mathbb{R}[i]$, where we write element $x \in \mathbb{R}[i]$ as x = a + bi, and use the rule $i^2 = 1$.)

i) Write $\tau = \zeta_8 + \zeta_8^{-1} = \zeta_8 + \zeta_8^7$. Show that $\tau^2 = 2$, hence using Euler's criterion, show

$$\tau^p \equiv \left(\frac{2}{p}\right) \tau \pmod{p}.$$

ii) Using the binomial theorem, show that

$$\tau^p \equiv \zeta_8^p + \zeta_8^{-p} \pmod{p}$$

iii) For $p \equiv \pm 1, \pm 3 \pmod{8}$, evaluate τ^p , and check the result can be written as

$$\tau^p = (-1)^{(p^2 - 1)/8} \tau \pmod{p}$$

iv) Conclude that

$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}.$$