
Primes - Problem Sheet 3 - Solutions

Quadratic residues and quadratic reciprocity

Q1) Use (the supplements to) Quadratic Reciprocity to find congruence conditions
on p such that

(−2
p

)
= 1. This gives an alternate proof of the Reciprocity step

for p | x2 + 2y2. How does this compare with Problem Sheet 2, Question 6?
Solution: We have

(−2
p

)
=
(−1
p

)(
2
p

)
.

We have need
(−1
p

)
=
(
2
p

)
= 1, or

(−1
p

)
=
(
2
p

)
= −1. The first occurs when

p ≡ 1 (mod 4) and p ≡ 1, 7 (mod 8). This is if and only if p ≡ 1 (mod 8).
The second occurs when p ≡ 3 (mod 4) and p ≡ 3, 5 (mod 8). This is if and

only if p ≡ 3 (mod 8).
Hence

(−2
p

)
= 1 if and only if p ≡ 1, 3 (mod 8).

Comparing this to Sheet 2, Q 6. There we directly showed that
(
2
p

)
= −1

and
(−1
p

)
= −1 implies

(−2
p

)
= 1, without knowing that the Legendre symbol

is multiplicative:
(
ab
p

)
=
(
a
p

)(
b
p

)
.

Q2) Find congruence conditions on p such that
(
a
p

)
= 1 for

i) a = ±5,

ii) a = ±7,

iii) a = ±6,

iv) a = ±10,

v) a = ±21.
Hence state the corresponding Reciprocity steps for these x2 + ny2, in these

cases.
Solution: These are all very similar, so we only deal with a = ±6, explicitly.
• (Case a = 6:) We want

(
6
p

)
= 1. But

(
6
p

)
=
(
2
p

)(
3
p

)
. So we require(

2
p

)
=
(
3
p

)
= 1, or

(
2
p

)
=
(
3
p

)
= −1.

We have
(
2
p

)
= 1 iff p ≡ 1, 7 (mod 8) and

(
2
p

)
= −1 iff p ≡ 3, 5 (mod 8).

We have
(
3
p

)(p
3

)
= (−1)(p−1)/2(3−1)/2 = (−1)(p−1)/2 =

(−1
p

)
, using QR and

the first supplement. Therefore
(
3
p

)
=
(p
3

)(−1
p

)
.

We want
(p
3

)
=
(−1
p

)
= 1, or

(p
3

)
=
(−1
p

)
= −1. But

(p
3

)
= 1 iff p ≡

1 (mod 3) and
(p
3

)
= −1 iff p ≡ 2 (mod 3). By the first supplement(−1

p

)
= 1 iff p ≡ 1 (mod 4) and

(−1
p

)
= −1 iff p ≡ 3 (mod 4).

So we get(
3

p

)
= 1 ⇐⇒ p ≡ 1 (mod 3) and p ≡ 1 (mod 4)

or p ≡ 2 (mod 3) and p ≡ 3 (mod 4)

⇐⇒ p ≡ 1 (mod 12) or p ≡ 11 (mod 12)
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Similarly (
3

p

)
= −1 ⇐⇒ p ≡ 5, 7 (mod 12) .

Put these together with
(
2
p

)
= ±1. We get(

6

p

)
= 1 ⇐⇒ p ≡ 1, 11 (mod 12) and p ≡ 1, 7 (mod 8)

or p ≡ 5, 7 (mod 12) and p ≡ 3, 5 (mod 8)

⇐⇒ p ≡ 1, 23 (mod 24) or p ≡ 5, 19 (mod 24)

So
(
6
p

)
= 1 if and only if p ≡ 1, 5, 19, 23 (mod 24).

[For explanation: we can get these congruences using the Chinese re-
mainder theorem. Or just directly convert to congruence modulo the
lcm.
The lcm of 12 and 8 is 24. So the smallest compatible modulus will be
24. We have

p ≡ 1, 11 (mod 12) ⇐⇒ p ≡ 1, 11, 1 + 12, 11 + 12 (mod 24)

⇐⇒ p ≡ 1, 11, 13, 23 (mod 24)

and

p ≡ 1, 7 (mod 8) ⇐⇒ p ≡ 1, 7, 1 + 8, 7 + 8, 1 + 16, 7 + 16 (mod 24)

⇐⇒ p ≡ 1, 7, 9, 15, 17, 23 (mod 24) .

Requiring both of these to hold means

p ≡ 1, 23 (mod 24) .

Similarly for the other congruences.]
Now we use the result that an odd prime p - n has p | x2 + ny2 ⇐⇒(−n
p

)
= 1. So we obtain the reciprocity step: an odd prime p - D = −24

divides x2 − 6y2 if and only if p ≡ 1, 5, 19, 23 (mod 24).
• We get

(−6
p

)
= 1, we require

(
6
p

)
= 1 and

(−1
p

)
= 1 or

(
6
p

)
= −1 and(−1

p

)
= −1.

For the first, we get

p ≡ 1, 5, 19, 23 (mod 24) and p ≡ 1 (mod 4)

so

p ≡ 1, 5 (mod 24) .

For the second

p ≡ 7, 11, 13, 17 (mod 24) and p ≡ 3 (mod 4) .

(The congruence mod 24 are the ‘complementary’ ones to the previous
list.) So we get

p ≡ 7, 11 mod ∗ 24. .

Overall (
−6

p

)
= −1 ⇐⇒ p ≡ 1, 5, 7, 11 (mod 24) .
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Use the result that an odd prime p - n has p | x2 + ny2 iff
(−n
p

)
= 1.

So we obtain the reciprocity step that an odd prime p - D = 24 divides
x2 + 6y2 if and only if p ≡ 1, 5, 7, 11 (mod 24).

Q3) (Easy cases of Dirichlet’s theorem on primes in arithmetic progressions)
i) By directly imitating Euclid’s classical proof that there are infinitely many

primes, show that there are infinite many primes p ≡ 3 (mod 4). Hint:
consider Nk = 22p1p2 . . . pk − 1, where p1 = 3, p2 = 7, . . . are the primes of
the form 4n+ 3.
Solution: Suppose only finitely many, then consider Nk = 22p1p2 . . . pk−1,
where p1, . . . , pk are all such primes pi ≡ 3 (mod 4).
Then Nk ≡ 3 (mod 4). Nk must be divisible by some prime p ≡ 3 (mod 4).
This is because a product of primes p ≡ 1 (mod 4) is necessarily also
1 (mod 4).
So some prime p ≡ 3 (mod 4) divides Nk. But our list contains all such
primes, and none of them divide Nk since they all leave a remainder of −1.
Hence our list is not complete.

ii) By using Lemma 3.8, with n = 1, adapt the above proof, to show there are
infinitely many primes p ≡ 1 (mod 4).
Solution: This lemma says that an odd prime p | x2 + y2, gcd(x, y) = 1 if
and only if

(−4
p

)
= 1. In particular p | x2 +1 implies

(−4
p

)
= 1, which implies(−1

p

)
= 1, and so p ≡ 1 (mod 4).

Suppose that there are only finitely many primes≡ 1 (mod 4), say p1, . . . , pk.
Now consider

Nk = (2p1 · · · pk)2 + 1 .

This must be divisible by some odd prime. But by the above result, any
such odd prime divisor is ≡ 1 (mod 4). This must be some prime not on
our list, as all primes on our list leave a remainder of 1.
Hence there are infinitely many primes of the form p ≡ 1 (mod 4).

iii) Show that there are infinitely many primes p ≡ 1 (mod 3) and infinitely
many primes p ≡ 2 (mod 3).
Solution: For p ≡ 2 (mod 3), take a list p1, . . . , pk of all primes≡ 2 (mod 3).
Set

Nk = (12p1 · · · pk)− 1 .

This is odd and ≡ 2 (mod 3), so must be divisible by an odd prime ≡
2 (mod 3). Otherwise the result is ≡ 1 (mod 3). This prime is not already
on the list. Hence the list must be infinite.
For p ≡ 1 (mod 3), we use that an odd prime p | x2 + 3y2 if and only if(−12
p

)
= 1 if and only if

(−3
p

)
= 1 if and only if p ≡ 1 (mod 3).

Take a list p1, . . . , pk of all primes ≡ 1 (mod 3). Set

Nk = 3(2p1 · · · pk)2 + 1 .

This is odd so is divisible by an odd prime. It is ≡ 1 (mod 3), so not divisible
by 3. By the above, we have that any prime divisor must be ≡ 1 (mod 3).
Dividing by pk leaves a remainder of 1, so such a prime divisor is not on the
list. Hence the list must be infinite.
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Q4) (Primes of the form x2 − 2y2)
i) Show directly that the descent step holds for x2 − 2y2.

Solution: See problem sheet 2, Q6iia).

ii) Use quadratic reciprocity to determine when p | x2 − 2y2, gcd(x, y) = 1.
Solution: Using a lemma from lectures, we know an odd prime p not
dividing D = 8 divides x2 − 2y2 if and only if

(
D
p

)
=
(
8
p

)
= 1.

But
(
8
p

)
=
(
2
p

)2(2
p

)
=
(
2
p

)
. And

(
2
p

)
= 1 if and only if p ≡ 1, 7 (mod 8) using

the second supplement to quadratic reciprocity.

iii) Give a condition on when a prime p = x2 − 2y2.
Solution: We have p ≡ 1, 7 (mod 8) implies

(
2
p

)
= 1, which implies p |

x2 − 2y2, gcd(x, y) = 1. By the previous part, this means p = x2 − 2y2, as
descent works.
Conversely, if p = x2−2y2, we see that p ≡ 1, 7 (mod 8) by reducing modulo
8.
Hence, for p 6= 2, we have p = x2 − 2y2 if and only if p ≡ 1, 7 (mod 8).

Q5) In this exercise you will evaluate
(
2
p

)
in a different way, using Euler’s criterion.

Consider (Z/pZ), and suppose we extend it to F = (Z/pZ)[ζ8] which includes
(the image of) ζ8 = e2πi/8, a primitive 8-th root of 1. Then any element x ∈ F
can be written

x ≡
7∑
i=0

aiζ
i
8 (mod p) ,

with addition and multiplication given in the ‘natural ways’ using the rule
ζ88 = 1. (Similar to C = R[i], where we write element x ∈ R[i] as x = a + bi,
and use the rule i2 = 1.)

i) Write τ = ζ8 + ζ−1
8 = ζ8 + ζ78 . Show that τ 2 = 2, hence using Euler’s

criterion, show

τ p ≡
(

2

p

)
τ (mod p) .

Solution: As a complex number, we compute τ 2 = (ζ8+ζ
−1
8 )2 = ζ28+2+ζ−2

8 .
But ζ28 = exp(2πi/4) = i, and ζ−2

8 = −i. So τ 2 = 2.
By Euler’s criterion, we have(

2

p

)
≡ 2(p−1)/2 (mod p) .

But 2 = τ 2, so (
2

p

)
≡ τ 2(p−1)/2 = τ p−1 .

Finally, multiplying by τ gives(
2

p

)
τ ≡ τ p (mod p)

ii) Using the binomial theorem, show that

τ p ≡ ζp8 + ζ−p8 (mod p)
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Solution: We have

τ p = (ζ8 + ζ−1
8 )p = ζp8 + ζ−p8 +

p−1∑
i=1

(
p

i

)
ζp−2i
8

Since 1 ≤ i ≤ p− 1, we know
(
p
i

)
= 0 (mod p). (There is no way to cancel

the prime p using factors in i!(p− i)!, since they are all < p.)
Hence

τ p ≡ ζp8 + ζ−p8 (mod p) .

iii) For p ≡ ±1,±3 (mod 8), evaluate τ p, and check the result can be written
as

τ p = (−1)(p
2−1)/8τ (mod p)

Solution: For p = 8k + 1, we have

τ p ≡ ζ8 + ζ−1
8 = τ ,

and (−1)(p
2−1)/8 = (−1)8k

2+2k = 1.
Similarly p = 8k + 3 gives

τ p ≡ ζ38 + ζ−3
8 = ζ48ζ

−1
8 + ζ−4

8 ζ18 = −ζ−1
8 − ζ8 = −τ ,

and (−1)(p
2−1)/8 = (−1)8k

2+2k+1 = −1.
The other cases are similar.

iv) Conclude that (
2

p

)
= (−1)(p

2−1)/8 .

Solution: Combining the above, we have(
2

p

)
τ ≡ τ p ≡ (−1)(p

2−1)/8τ (mod 8) .

Since τ 2 ≡ 2 (mod p), we can write τ−1 ≡ 2−1τ , where 2−1 exists as
gcd(2, p) = 1.
So we can cancel τ from both sides to get(

2

p

)
≡ (−1)(p

2−1)/8 (mod p) .

Since both sides are ±1, this congruence modulo odd prime p is sufficient
to get =.
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