Primes - Problem Sheet 4

Properties of quadratic forms

Q1) Let $f(x_1, \ldots, x_n)$ be a quadratic form (with coefficients over some ring $R \supset \mathbb{Z}$). Show that

f is integral implies 2f is *classically* integral.

- Q2) Suppose that $f(x_1, \ldots, x_n)$ is a non-primitive integral quadratic form. Show that $f(x_1, \ldots, x_n)$ can represent at most one prime.
- Q3) Suppose $f(x, y) = ax^2 + bxy + cy^2$ is an integral binary quadratic form, with discriminant $D = b^2 4ac$.
 - i) Show that f is indefinite if D > 0.
 - ii) Show that f is positive (respectively negative) definite if D < 0 and a > 0 (respectively a < 0).
 - iii) What happens when D = 0? What happens if D > 0 is a perfect square? Hint: Complete the square!
- Q4) Let $f(x,y) = ax^2 + bxy + cy^2$ be a binary quadratic form, of discriminant $D = b^2 4ac$. Show that $D \equiv 0, 1 \pmod{4}$, and that every such D occurs.
- Q5) Show that *R*-equivalence is an equivalence relation on *n*-ary quadratic forms over *R*. Showi) The form *f* is equivalent to *f*,
 - 1) The form f is equivalent to f,
 - ii) If f is equivalent to g, then g is equivalent to f, and
 - iii) If f equivalent to g, and g equivalent to h, then f equivalent to h. Check also for $SL_n(\mathbb{Z})$ -equivalence, when $R = \mathbb{Z}$.
- Q6) Suppose f and g are $GL_n(R)$ -equivalent quadratic forms. Show i) det(f) and det(g) differ by a square

$$\det(f) = \lambda^2 \det(g) \,,$$

for some $\lambda \neq 0 \in \mathbb{R}^*$. How does λ arise from the equivalence of f to g?

- ii) For $R = \mathbb{Z}$, conclude $\det(f) = \det(g)$, and explain why $\operatorname{GL}_n(\mathbb{Z})$ -equivalent integral binary quadratic forms have the same discriminant.
- Q7) Suppose f and g are $\operatorname{GL}_n(R)$ -equivalent quadratic forms. Show i) f represents $r \in R$ if and only if g represents $r \in R$.
 - ii) For $R = \mathbb{Z}$, f represents $n \in \mathbb{Z}$ properly, if and only if g represents $n \in \mathbb{Z}$ properly. Check also for $\mathrm{SL}_n(\mathbb{Z})$ -equivalence. Use this to show that

$$x^{2} + 14y^{2}$$
, $2x^{2} + 7y^{2}$ and $3x^{2} + 2xy + 5y^{2}$

are not $\operatorname{GL}_n(\mathbb{Z})$ -equivalent.

Q8) Suppose f and g are integral n-ary quadratic forms. Then 2f and 2g are classically integral. Show that

f is $\operatorname{GL}_n(\mathbb{Z})$ -equivalent to g if and only if 2f is $\operatorname{GL}_n(\mathbb{Z})$ -equivalent to 2g.

Check also for $SL_n(\mathbb{Z})$ -equivalence.

Q9) Suppose f, g, h are integral quadratic forms. Suppose f and g are improperly equivalent, and g and h are improperly equivalent. Show that f and h are properly equivalent.