
Primes - Problem Sheet 4 - Solutions

Properties of quadratic forms

Q1) Let f(x1, . . . , xn) be a quadratic form (with coefficients over some ring R ⊃ Z).
Show that

f is integral implies 2f is classically integral.

Solution: Integral means

mat(f) =
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aij
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)
implies

mat(2f) =

(
2a11 aij
aij 2ann

)
,

which means 2f is classically integral.

Q2) Suppose that f(x1, . . . , xn) is a non-primitive integral quadratic form. Show
that f(x1, . . . , xn) can represent at most one prime.
Solution: Since f is not primitive, let d = gcd(rij) be the common divisor of
all coefficients. Then for any ai ∈ Zn we have d | f(a1, . . . , ai).

If f represents the prime p, then d | p, so d = p. Hence all values represented
by f(x1, . . . , xn) are divisible by p. The only prime divisible by p is p itself.

Q3) Suppose f(x, y) = ax2 + bxy + cy2 is an integral binary quadratic form, with
discriminant D = b2 − 4ac.
i) Show that f is indefinite if D > 0.

ii) Show that f is positive (respectively negative) definite if D < 0 and a > 0
(respectively a < 0).

iii) What happens when D = 0? What happens if D > 0 is a perfect square?
Hint: Complete the square!
Solution: We write

af(x, y) = a(ax2 + bxy + cy2) = (ax+ by/2)2 − (b2/4− ac)︸ ︷︷ ︸
D/4

y2 .

If D < 0, then af(x, y) is the sum of two squares, so is ≥ 0. It equals 0
if and only if y = 0 and ax + by/2 = 0, i.e. x = y = 0. So f(x, y) =
1
a
((ax+by/2)2−(b2/4− ac)︸ ︷︷ ︸

D/4

y2) is positive-definite if a > 0 and negative definite

if a < 0. Since D < 0, we cannot have a = 0.
For D > 0, not a perfect square, we must have a 6= 0. (Else D = b2.) Write

f(x, y) = 1
a
(ax + by/2)2 − D

4a
y2. Taking y = 0, and x = 1 gives a. Taking

y = 2a and x = b gives f(b,−2a) = −D
4a

(2a)2, which has the opposite sign to
a. Hence f(x, y) is indefinite.
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For D a perfect square, then we can factor the polynomial (over Q at first,
and so over Z by the Gauss lemma for polynomials). If D = 0, then the
root r = β

α
of f(x, 1) is repeated, so we factor f(x, y) as a(βx − αy)2. (Note

f(x, y) = y2f(x/y, 1).) If a = 0 the polynomial is identically 0. If a > 0
it is positive-semidefinite by taking y = β, y = α. If a < 0, it is negative-
semidefinite.

If D 6= 0, then f(x, 1) takes some positive values and some negative values,
between the roots and outside the roots we get different signs! Let x = p/q
give a positive, and x = r/s a negative. Then f(p, q) = q2f(p/q, 1) > 0 and
f(r, s) = s2f(r/s, 1) < 0. So f(x, y) is indefinite (and non-trivially represents
0). (Perhaps this should be semi-indefinite?)

Q4) Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form, of discriminant
D = b2 − 4ac. Show that D ≡ 0, 1 (mod 4), and that every such D occurs.
Solution: By reducing modulo 4, we see that D ≡ b2 (mod 4), and the squares
modulo 4 are 02, (±)12, 22 ≡ 0, 1 (mod 4). Conversely, if D = 4k, then x2−ky2
has discriminant 4k. Whereas for D = 4k + 1, x2 + xy − ky2 has discriminant
4k + 1.

Q5) Show that R-equivalence is an equivalence relation on n-ary quadratic forms
over R. Show
i) The form f is equivalent to f ,

ii) If f is equivalent to g, then g is equivalent to f , and

iii) If f equivalent to g, and g equivalent to h, then f equivalent to h.
Check also for SLn(Z)-equivalence, when R = Z.

Solution:
• The identity matrix B = In shows f is SLn(Z)/GLn(Z) -equivalent to f .
• If B gives equivalence of f to g then B−1 gives equivalence of g to f . As

det(B) = det(B−1), this works for SLn(Z) equivalence too.
• If B gives equivalence f to g, and C gives equivalence g to h. Then BC

gives the equivalence f to h. Since det(BC) = det(B) det(C), this holds
for SLn(Z) equivalence too.

Q6) Suppose f and g are GLn(R)-equivalent quadratic forms. Show
i) det(f) and det(g) differ by a square

det(f) = λ2 det(g) ,

for some λ 6= 0 ∈ R∗. How does λ arise from the equivalence of f to g?

ii) For R = Z, conclude det(f) = det(g), and explain why GLn(Z)-equivalent
integral binary quadratic forms have the same discriminant.

Solution: Let B give the equivalence, then mat(g) = B>mat(f)B. Taking
determinants gives

det(g) = det(B)2 det(f) .

So λ = det(B)−1 ∈ R∗.
Since Z∗ = { ±1 }, we get λ2 = 1, meaning equivalent integral forms have

the same discriminant.
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Q7) Suppose f and g are GLn(R)-equivalent quadratic forms. Show
i) f represents r ∈ R if and only if g represents r ∈ R.

ii) For R = Z, f represents n ∈ Z properly, if and only if g represents n ∈ Z
properly. Check also for SLn(Z)-equivalence.
Use this to show that

x2 + 14y2 , 2x2 + 7y2 and 3x2 + 2xy + 5y2

are not GLn(Z)-equivalent.
Solution: If r = f(a1, . . . , an), and g(~x) = f(B~x), then g(B−1~x) = f(~x). So
we can write g(B−1(a1, . . . , an)>) = f(a1, . . . , an) = r, to see (a′1, . . . , a

′
n)> =

B−1(a1, . . . , an)> gives a representation of r by g.
By symmetry, we get f represents r if and only if g represents r.
This holds for BinGLn(R), and also for proper equivalence B ∈ SLn(Z).
If gcd(ai) = 1, then we cannot have gcd(a′i) > 1. For if gcd(a′i) = d, then

(a1, . . . , an)> = B−1(a′1, . . . , a
′
n)> and each entry is divisible by d, showing

gcd(a1, . . . , an) ≥ d. So f(a1, . . . , an) is a proper representation of r implies
g(a′1, . . . , a

′
n) is a proper representation of r.

Q8) Suppose f and g are integral n-ary quadratic forms. Then 2f and 2g are
classically integral. Show that

f is GLn(Z)-equivalent to g if and only if 2f is GLn(Z)-equivalent to 2g.

Check also for SLn(Z)-equivalence.
Solution: Suppose f is equivalent to g via B. The matrix of 2f is given by
2 mat(f). Then

g(~x) = x>Gx = x>B>GBx = x>Fx = f(B~x)

if and only if

2g(~x) = x>(2G)x = x>B>(2G)Bxx>2(B>GB)x = x>2Fx = (2f)(B~x) .

So 2f is equivalent to 2g via B. And conversely.

Q9) Suppose f, g, h are integral quadratic forms. Suppose f and g are improperly
equivalent, and g and h are improperly equivalent. Show that f and h are
properly equivalent.
Solution: Matrix B gives improper equivalence between f and g. Matrix
C gives improper equivalence between g and h. Then B,C ∈ GLn(Z) with
det(B) = det(C) = −1.

The matrix CB gives equivalence between f and h, and det(CB) = det(C) det(B) =
(−1)2 = 1. This is a proper equivalence between f and g.
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