Primes - Problem Sheet 5

Class number, and reduction of quadratic forms

Positive-definite

- Q1) Apply the proof of Theorem 5.5 to find reduced forms equivalent to the following, also give matrices which show the equivalence:
 - $6x^2 2xy + y^2$
 - $10x^2 10x + 3y^2$
 - $5x^2 10xy + 6y^2$
 - $5x^2 + 6xy + 3y^2$
 - $2x^2 + 4xy + 5y^2$ $x^2 + 2xy + 7y^2$ $8x^2 2xy + y^2$
- Q2) Check that the following, for discriminant D < 0 are always reduced forms
 - For $D \equiv 0 \pmod{4}$, the form $x^2 \frac{D}{4}y^2$,
 - For $D \equiv 1 \pmod{4}$, the form $x^2 + xy + \frac{1-D}{4}y^2$.

These are called the *principal forms*. For D > 0, these forms are not reduced, but we still call them the *principal forms*. (These forms correspond to the principal ideal class in quadratic number fields. See handout 2.)

- Q3) Suppose that $f(x) = ax^2 + bxy + cy^2$ is a positive-definite binary quadratic form of discriminant D < 0. Suppose $a < \sqrt{-D/4}$ and $-a < b \le a$. Show that f is reduced.
- Q4)• Verify the following table of class numbers (in the positive definite case), by listing all reduced forms of the given discriminant.

D	h(D)	D	h(D)
-3	1	-4	1
-7	1	-8	1
-11	1	-12	1
-15	2	-16	1
-19	1	-20	2
-23	3	-24	2
-27	1	-28	1
-31	3	-32	2
-35	2	-36	2
-39	4	-40	2

- Write a computer program to extend this to all discriminants -32768 <D < 0. Hint: h(-32767) is divisible by 13. (Runtime of about 30) minutes, is fine)
- Q5) The entries above for D = -4, -8, -12 correspond to Fermat's $x^2 + y^2, x^2 + 2y^2$ and $x^2 + 3y^2$ theorems, which we now have powerful techniques to prove.

Since h(D) = 1 for D = -3, -7, -11, -16, -19, -27 and -28, we obtain corresponding results for these cases.

- i) State and prove congruence conditions on when a prime p can be represented by
 - $x^2 + xy + y^2$, of discriminant -3,
 - $x^2 + xy + 2y^2$, of discriminant -7,
 - $x^2 + xy + 3y^2$, of discriminant -11,
 - $x^2 + 4y^2$, of discriminant -16,
 - $x^2 + xy + 5y^2$, of discriminant -19,
 - $x^2 + xy + 7y^2$, of discriminant -27,
 - $x^2 + 7y^2$, of discriminant -28.
- ii) Show directly that the result $p = x^2 + 4y^2$ where D = -16 is (trivially) equivalent to result for $p = x^2 + y^2$ where D = -4.
- iii) Similarly show the result for $p = x^2 + 7y^2$ with D = -28 is (trivially) equivalent to the result for $p = x^2 + xy + 2y^2$ with D = -7. Hint: reduce modulo 2 to show y is even in $x^2 + xy + 2y^2$, then write $x^2 + xy + 2y^2 = (x + y/2)^2 + 7(y/2)^2$.
- Q6) Suppose that the positive-definite form f(x, y) represents the value 1. Show that f(x, y) is equivalent to the principal form (recall this is: either $x^2 + ny^2$, for discriminant D = -4n, or $x^2 + xy + ny^2$, for discriminant D = -4k + 1). What about if f(x, y) is an indefinite form?
- Q7) Suppose p is a prime number, represented by two forms f(x, y) and g(x, y) of discriminant D (positive-definite, or indefinite). Show that f(x, y) and g(x, y) are equivalent (possibly improperly equivalent). Hint: use Lemma 4.19, and examine the middle coefficient modulo p.
- Q8) By considering reduced forms, of the form $ax^2 + cy^2$. Show that the class number of discriminant D can be arbitrarily high. Hint: consider $D = -4p_1p_2\cdots p_k$, where p_i are distinct primes.

Indefinite

- Q9) Imitate the proof of Theorem 5.5 to show that every indefinite quadratic form of some discriminant D is equivalent to one of the form $ax^2 + bxy + cy^2$ with $|b| \leq |a| \leq |c|$. Moreover, show that such a form has ac < 0 and $|a| \leq \frac{1}{2}\sqrt{D}$.
- Q10) If $ax^2 + bxy + cy^2$ is a reduced indefinite binary quadratic form, show that
 - $|a| + |c| < \sqrt{D}$,
 - $|a|, b, |c| < \sqrt{D}$, and
 - ac < 0.

PRIMES - PROBLEM SHEET 5

Q11) • Verify the following table of class numbers (in the indefinite case), by listing all reduced forms of the given discriminant and partitioning them into ρ -orbits.

D	$h^+(D)$	$\mid D$	$h^+(D)$
5	1	8	1
12	2	13	1
17	1	20	1
21	2	24	2
28	2	29	1
32	2	33	2
37	1	40	2
41	1	44	2
45	2	48	2
52	1	53	1
56	2	57	2
60	4		

- Write a computer program to extend this to all non-square discriminants 0 < D < 32768.
- Q12) The entry for D = 8 corresponds to the result for $p = x^2 2y^2$, as given in Problem Sheet 2. The entry for D = 20 corresponds to our result above for $p = x^2 - 5y^2$. Since $h^+(D) = 1$ for D = 5, 13, 17, 20, 29, 7, 41, 52, 53, we obtain corresponding results for these cases.
 - i) State and prove congruence conditions on when a prime p can be represented by
 - $x^2 + xy y^2$ of discriminant D = 5,
 - $x^2 + xy 3y^2$ of discriminant 13,
 - $x^2 + xy 4y^2$ of discriminant 17,
 - $x^2 + xy 7y^2$ of discriminant 29,
 - $x^2 + xy 9y^2$ of discriminant 37,
 - $x^2 + xy 10y^2$ of discriminant 41,
 - $x^2 13y^2$ of discriminant 52,
 - $x^2 + xy 1y^2$ of discriminant 53.
 - ii) Derive a result for $x^2 17y^2$ using the result for $x^2 + xy 4y^2$. Hint: reduce $x^2 + xy 4y^2$ modulo 2 to show y is even, and write $x^2 + xy 4y^2 = (x + \frac{y}{2})^2 17(\frac{y}{2})^2$.
 - iii) Derive a result for $x^2 41y^2$ using the result for $x^2 + xy 10y^2$.
- Q13) Suppose that D = 8k+1 is a discriminant, and that $h^+(D) = 1$. By considering the primes which $x^2 + xy 2ky^2$ represents, show that every binary quadratic form of discriminant 4D is equivalent to $x^2 2ky^2$. Hence conclude $h^+(4D) = 1$.

(You may assume that any primitive integral binary quadratic form attains a prime value - this follows from the Chebotarev density theorem.)