
Primes - Problem Sheet 5 - Solutions

Class number, and reduction of quadratic forms

Positive-definite

Q1) Apply the proof of Theorem 5.5 to find reduced forms equivalent to the fol-
lowing, also give matrices which show the equivalence:
• 6x2 − 2xy + y2

• 10x2 − 10x+ 3y2

• 5x2 − 10xy + 6y2

• 5x2 + 6xy + 3y2

• 2x2 + 4xy + 5y2

• x2 + 2xy + 7y2

• 8x2 − 2xy + y2

Solution: These are all very similar, so we only treat the first part.
• We can make a smaller by applying S to get

x2 + 2xy + 6y2 .

Now we can make b smaller by applying T−1, giving

x2 + 5y2 .

And this is reduced.
We applied ST−1 = ( 0 1

−1 1 ). So we find

f(y,−x+ y) = x2 + 5y2

under this change of basis.

Q2) Check that the following, for discriminant D < 0 are always reduced forms
• For D ≡ 0 (mod 4), the form x2 − D

4
y2,

• For D ≡ 1 (mod 4), the form x2 + xy + 1−D
4
y2.

These are called the principal forms. For D > 0, these forms are not reduced,
but we still call them the principal forms. (These forms correspond to the
principal ideal class in quadratic number fields. See handout 2.)
Solution: This is a direct check of what reduced means: |b| ≤ a ≤ c holds
for the first since |b| = |0| = 0 ≤ a = 1 ≤ c = −D/4, since −D/4 ≥ 1.
D < 0 so −D > 0, and −D/4 is an integer. Since b = 0, the edge cases hold
automatically.

Similarly for the second case |b| = 1 ≤ a = 1, and a = 1 ≤ c = (1 −D)/4,
since D < 0, and (1−D)/4 is an integer. Since b = 1 > 0, the edge cases also
hold.

Q3) Suppose that f(x) = ax2 + bxy + cy2 is a positive-definite binary quadratic

form of discriminant D < 0. Suppose a <
√
−D/4 and −a < b ≤ a. Show

that f is reduced.
Solution: The conditions for reduced require |b| ≤ a and a ≤ c, with some
edge cases. From the hypothesis, we get |b| ≤ a, and if |b| = a, then b = a > 0.
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Now we have

c =
b2 −D

4a
≥ −D/4a > a2/a = a ,

and there is no edge case to check with a = c.
So f is reduced.

Q4) • Verify the following table of class numbers (in the positive definite case),
by listing all reduced forms of the given discriminant.

D h(D) D h(D)
−3 1 −4 1
−7 1 −8 1
−11 1 −12 1
−15 2 −16 1
−19 1 −20 2
−23 3 −24 2
−27 1 −28 1
−31 3 −32 2
−35 2 −36 2
−39 4 −40 2

• Write a computer program to extend this to all discriminants −32768 <
D < 0. Hint: h(−32767) is divisible by 13. (Runtime of about 30
minutes, is fine)

Solution: The reduced forms of discriminant D = −32 are given by the
following table

a b c Primitive? Reduced?
1 0 8 X X
2 0 4 X
3 2 3 X X
3 2 3 X

So there are 2 primitive reduced forms, confirming the number above.

Q5) The entries above for D = −4,−8,−12 correspond to Fermat’s x2+y2, x2+2y2

and x2 + 3y2 theorems, which we now have powerful techniques to prove.
Since h(D) = 1 for D = −3,−7,−11,−16,−19,−27 and −28, we obtain
corresponding results for these cases.

i) State and prove congruence conditions on when a prime p can be represented
by
• x2 + xy + y2, of discriminant −3,

• x2 + xy + 2y2, of discriminant −7,

• x2 + xy + 3y2, of discriminant −11,

• x2 + 4y2, of discriminant −16,

• x2 + xy + 5y2, of discriminant −19,

• x2 + xy + 7y2, of discriminant −27,
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• x2 + 7y2, of discriminant −28.
Solution: We deal only with the case x2 + xy + 3y2 as the results are all
very similar.
From our criterion/corollary, we have that for p 6= 2, 11

p = x2 + xy + 3y2

if and only if
(−11

p

)
= 1. (Since this is the only form of discriminant −11.)

Using quadratic reciprocity, we have(
11

p

)(
p

11

)
= (−1)(p−1)/2·(11−1)/2 = (−1)(p−1)/2 =

(
−1

p

)
So (

−11

p

)
=

(
p

11

)
= 1

if and only if p ≡ � (mod 11), and this is if and only if p ≡ (±1)2, . . . (pm5)2 =
1, 3, 4, 5, 9 (mod 11).

ii) Show directly that the result p = x2 + 4y2 where D = −16 is (trivially)
equivalent to result for p = x2 + y2 where D = −4.
Solution: The result we obtain is for p 6= 2, that p = x2 + 4y2 iff p ≡
1 (mod 4). But also the result that p = x2 + y2 iff p ≡ 1 (mod 4).
If we can write p = x2 + 4y2, then certainly p = x2 + (2y)2. But if we have
p = x2 + y2. Reducing modulo 2 shows that 1 = x2 + y2, so one of x and y
is even. Can’t both be odd else the result is 0 modulo 2! Say y = 2y′ even,
then

p = x2 + 4(y′)2 .

So the x2 + 4y2 result follows directly from the x2 + y2 result.

iii) Similarly show the result for p = x2 + 7y2 with D = −28 is (trivially)
equivalent to the result for p = x2 + xy + 2y2 with D = −7. Hint: reduce
modulo 2 to show y is even in x2 + xy + 2y2, then write x2 + xy + 2y2 =
(x+ y/2)2 + 7(y/2)2.
Solution: The p = x2 + 7y2 result says that for p 6= 2, 7, we have

p = x2 + 7y2 ⇐⇒ p ≡ 1, 2, 4 (mod 7) ,

while the p = x2 + xy + y2 says that for p 6= 2, 7, we have

p = x2 + xy + y2 ⇐⇒ p ≡ 1, 2, 4 (mod 7) .

If we can write p = x2+xy+2y2, then reducing modulo 2 gives 1 = x2+xy =
x(x+y). If y is odd, then x and x+y have different parities, so one is even,
giving 0 modulo 2. Hence y = 2y′ is even. Now we get

p = (x+ y′)2 + 7(y′)2 .

But then, if

p = x2 + 7y2 ,

we may write

p = (x− y)2 + (x− y)(2y) + 2(2y)2 = x′2 + x′y′ + 2(y′)2 ,

where x′ = x− y and y′ = 2y.
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Q6) Suppose that the positive-definite form f(x, y) represents the value 1. Show
that f(x, y) is equivalent to the principal form (recall this is: either x2 + ny2,
for discriminant D = −4n, or x2 + xy + ny2 ,for discriminant D = −4k + 1).

What about if f(x, y) is an indefinite form?
Solution: Since f(x0, y0) = 1 represents 1, it must represent 1 properly (as
d2 | 1 =⇒ d = 1, where d = gcd(x0, y0)). Hence f(x, y) is equivalent to
x2 + bxy + cy2. For D ≡ 0 (mod 4), we have b ≡ 0 (mod 2). By changing
x → x + ky, we change b → b + 2k. Thus, we can choose b = 0. This proves
f(x, y) equivalent to x2 − D

4
y2.

If D ≡ 1 (mod 4), we have b ≡ 1 (mod 2). By so we can choose b = 1, which
proves f(x, y) is equivalent to x2+xy+ 1−D

4
y2. This holds for positive-definite,

or indefinite forms.

Q7) Suppose p is a prime number, represented by two forms f(x, y) and g(x, y) of
discriminant D (positive-definite, or indefinite). Show that f(x, y) and g(x, y)
are equivalent (possibly improperly equivalent). Hint: use Lemma 4.19, and
examine the middle coefficient modulo p.
Solution: Any representation of a prime is proper (otherwise d2 | p!) Hence
the form f is equivalent to px2 +m1xy + c1y

2, and g to px2 +m2xy + c2y
2.

We know that m2
1 − 4pc1 = D = m2

2 − 4pc2, so that modulo p, we have
m2

1 ≡ m2
2 (mod p), i.e. m1 = ±m2 (mod p). We can put mi into the range

−p ≤ mi ≤ p, so we can assume m1 = ±m2 with exact equality, not just
congruence.

If m1 = m2, then the forms f and g are properly equivalent. If m1 = −m2,
then the forms are improperly equivalent. (Because m2

1 = m2
2, so c1 = c2

follows.)

Q8) By considering reduced forms, of the form ax2 + cy2. Show that the class
number of discriminant D can be arbitrarily high. Hint: consider D =
−4p1p2 · · · pk, where pi are distinct primes.
Solution: Choose n distinct primes p1, . . . , pn, and wrie D = −4p1 . . . pn.
There are 2n ways to write p1 . . . pn = ac, by choosing which factors appear in
a. Since the primes are distinct, a 6= c, so by swapping, we get 2n−1 ways of
writing with a < c.

But the form ax2 +cy2 is reduced, so we have h(D) ≥ 2n−1 →∞ as n→∞.
Hence h(D) can be arbitrarily large.

Indefinite

Q9) Imitate the proof of Theorem 5.5 to show that every indefinite quadratic form
of some discriminant D is equivalent to one of the form ax2 + bxy + cy2 with
|b| ≤ |a| ≤ |c|. Moreover, show that such a form has ac < 0 and |a| ≤ 1

2

√
D.

Solution: Fix an equivalence class of indefinite forms, and look at the |a|
values. Find a form with minimal |a|. We must have |a| ≤ |c|, else we can
get smaller |a| by changing (x, y)→ (y,−x) sending ax2 + bxy + cy2 → cx2 −
bxy + ay2.

Now we can put b into the range −|a| ≤ b ≤ |a| by using the transformation
(x, y) 7→ (x+ ky, y). This does not change |a|, so we get |b| ≤ |a| ≤ |c|.
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We now have b2 = |b|2 ≤ |ac|, and b2 − 4ac > 0 by definition. Thus
4ac < b2 < |ac|, and we must have ac < 0.

From here, we have |ac| = −ac, so D = b2 − 4ac = b2 + 4|ac| > 0, and
4|ac| = D − b2 < D. Then a2 = |a|2 ≤ |ac|, so 4a2 < D, or equivalently

a < 1
2

√
D.

Q10) If ax2 + bxy + cy2 is a reduced indefinite binary quadratic form, show that

• |a|+ |c| <
√
D,

• |a|, b, |c| <
√
D, and

• ac < 0.
Solution: For i), we have

|a|+ |c| −
√
D =

D − 4|D|
√
D + 4a2 − b2

4|a|
=

(
√
D − 2|a|)2 − b2

4|a|
,

so by the definition of reduced, this is < 0.
Then we get ii) automatically. (The condition on b is part of the definition.)

For iii) make use of b <
√
D, to get ac = (b2 −D)/4 < 0.

Q11) • Verify the following table of class numbers (in the indefinite case), by
listing all reduced forms of the given discriminant and partitioning them
into ρ-orbits.

D h+(D) D h+(D)
5 1 8 1
12 2 13 1
17 1 20 1
21 2 24 2
28 2 29 1
32 2 33 2
37 1 40 2
41 1 44 2
45 2 48 2
52 1 53 1
56 2 57 2
60 4

• Write a computer program to extend this to all non-square discriminants
0 < D < 32768.

Solution: We only give the table for discriminant D = 40, since all cases are
very similar.

The reduced forms are given by the following

a b c
-3 2 3
-3 4 2
-2 4 3
-1 6 1
1 6 -1
2 4 -3
3 2 -3
3 4 -2
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Under ρ, we find

(−3, 2, 3) 7→ (3, 4,−2) 7→ (−2, 4, 3) 7→ (3, 2,−3)

7→ (−3, 4, 2) 7→ (2, 4,−3) 7→ (−3, 2, 3)

and
(−1, 6, 1) 7→ (1, 6,−1) 7→ (−1, 6, 1)

So there are two equivalence classes, giving h(+)(40) = 2.

Q12) The entry for D = 8 corresponds to the result for p = x2 − 2y2, as given in
Problem Sheet 2. The entry for D = 20 corresponds to our result above for
p = x2 − 5y2. Since h+(D) = 1 for D = 5, 13, 17, 20, 29, 7, 41, 52, 53, we obtain
corresponding results for these cases.

i) State and prove congruence conditions on when a prime p can be represented
by
• x2 + xy − y2 of discriminant D = 5,

• x2 + xy − 3y2 of discriminant 13,

• x2 + xy − 4y2 of discriminant 17,

• x2 + xy − 7y2 of discriminant 29,

• x2 + xy − 9y2 of discriminant 37,

• x2 + xy − 10y2 of discriminant 41,

• x2 − 13y2 of discriminant 52,

• x2 + xy − 13y2 of discriminant 53.
Solution: We deal only with D = 41, since all cases are very similar.
For p 6= 2, 41, we have p = x2 + xy − 10y2 iff

(
41
p

)
= 1. By QR(

41

p

)(
p

41

)
= (−1)(p−1)/2·(41−1)/2 = 1 ,

so (
41

p

)
=

(
p

41

)
= 1 ⇐⇒ p ≡ � (mod 41]) .

And this is iff

p ≡ 1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 21, 23, 25, 31, 32, 33, 36, 37, 39 (mod 41)40

ii) Derive a result for x2−17y2 using the result for x2 +xy−4y2. Hint: reduce
x2 + xy − 4y2 modulo 2 to show y is even, and write x2 + xy − 4y2 =
(x+ y

2
)2 − 17(y

2
)2.

Solution: This is similar to the next question, see that solution.

iii) Derive a result for x2 − 41y2 using the result for x2 + xy − 10y2.
Solution: For p 6= 2, 41, I claim that the condition for x2 − 41y2 is the
same as for x2 + xy − 10y2.
Since p = x2 + xy − 10y2 modulo 2, gives 1 = x2 + xy = x(x + y), we sees
y is even. (Else x and x+ y have the same parity.)
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Then write p = (x+ y/2)2 − 41(y/2)2.
Now given p = x2 − 41y2, we can write

p = x′2 + x′y′ − 10y′2 ,

where x′ = x− y, and y′ = 2y.

Q13) Suppose thatD = 8k+1 is a discriminant, and that h+(D) = 1. By considering
the primes which x2 + xy− 2ky2 represents, show that every binary quadratic
form of discriminant 4D is equivalent to x2−2ky2. Hence conclude h+(4D) = 1.
(You may assume that any primitive integral binary quadratic form attains a
prime value - this follows from the Chebotarev density theorem.)
Solution: For odd primes p - D, the primes represented by x2 +xy−2ky2 are
characterised by

(
D
p

)
= 1. But given

p = x2 + xy − 2ky2 ,

reducing mod 2 shows that

1 ≡ x(x+ y) .

Therefore we must have the y is even, otherwise x is even, or x is odd, and
x+ y is even. Now we can write

p = (x+ y/2)2 − (8k + 1)(y/2)2

so that p is represented by x2− (8k+ 1)y2. Now given p = x2− (8k+ 1)y2, we
can write

p = (x− y)2 + x(2y)− 2k(2y)2 ,

so that p is represented by x2 + xy − 2ky2. We now say

p = some BQF of discriminant 4D ⇐⇒
(

4D

p

)
= 1 ⇐⇒

(
D

p

)
= 1 ⇐⇒ p = x2−(8k+1)y2 .

So any BQF of discriminant 4D (which represents a prime!) must be equivalent
(or improperly equivalent) to x2−(8k+1)y2. Since x2−(8k+1)y2 is improperly
equivalent to itself via x 7→ −x, we have actually that such a form must be
properly equivalent to x2 − (8k + 1)y2.

Finally, we need to see that any BQF attains a prime value! But we are
allowed to assume this. (It follows from the Chebotarev Density Theorem. Is
there another way to see this?)
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