Primes - Problem Sheet 6

Class number 1 and genus theory

Class number 1

- Q1) Suppose m > 1 is an integer, and $m \neq p^r$ is not a prime power. Show that we can write m = ac, where 1 < a < c, and gcd(a, c) = 1.
- Q2) In this exercise we will prove that h(-4n) = 1, for n > 0 if and only if n = 1, 2, 3, 4, 7.
 - i) Show that h(-4n) = 1 for these n, by listing the reduced forms.
 - ii) Suppose that n is not a prime power. Use the previous exercises to write down a second reduced form of discriminant -4n. Hint: b = 0.
 - iii) Suppose that $n = 2^r$. If $r \ge 4$, show that

$$4x^2 + 4xy + (2^{r-2} + 1)y^2$$

is reduced, and is primitive. Check that h(-4n) > 1, for r = 3, also.

iv) Suppose now that $n = p^r$, p an odd prime. Suppose n + 1 = ac, where $2 \le a < c$, and gcd(a, c) = 1. Show that

$$ax^2 + 2xy + cy^2$$

is reduced of discriminant -4n.

v) Finally, suppose that $n = p^r$, but that $n + 1 = 2^s$. If $s \ge 6$, show that $8x^2 + 6xy + (2^{s-3} + 1)y^2$

$$0x + 0xy + (2 + 1)y$$

is a reduced form of discriminant -4n. What happens for s = 1, 2, 3, 4, 5?

vi) Conclude that h(-4n) = 1 if and only if n = 1, 2, 3, 4, 7.

Elementary genus theory

- Q3) Apply the idea from $p = x^2 + 5y^2$ from Example 6.6, or the general result from Theorem 6.11, to obtain congruence conditions for
 - $p = x^2 + 6y^2$ and the other form of discriminant -24,
 - $p = x^2 + 8y^2$ and the other form of discriminant -32,
 - $p = x^2 + 21y^2$, and the other 3 forms of discriminant -84,
 - $p = x^2 3y^2$, and the other form of discriminant 12,
 - $p = x^2 10y^2$ and the other form of discriminant 40.
 - $p = x^2 15y^2$ and the other 7 forms of discriminant 60.
- Q4) It is not possible to obtain a congruence condition for $p = x^2 + 56y^2$, even by using the genus theory Theorem 6.11. What is the best result you can obtain for $p = x^2 + 56y^2$, and the other 7 forms of discriminant -224? Hint: it is possible to give congruence conditions for some of the forms.

- Q5) Show that the values in $(\mathbb{Z}/D\mathbb{Z})^*$ represented by f(x, y), a form of discriminant $D \equiv 1 \pmod{4}$ form a coset of H (the values of the principal form), in ker χ .
- Q6) It appears that this is more difficult than I expected! Suppose that f(x, y) and g(x, y) are two binary quadratic forms of discriminant D. Suppose that f(x, y) and g(x, y) are $\operatorname{GL}_2(\mathbb{Q})$ -equivalent, via a matrix whose entries have denominators all coprime to 2D. Show that f(x, y) and g(x, y) represent the same values in $(\mathbb{Z}/N\mathbb{Z})^*$, for all non-zero N. Conclude that f(x, y) and g(x, y) are in the same genus.
- Q7) Recall that $x^2 + 14y^2$ and $2x^2 + 7y^2$ are in the same genus, since they both represent $\{1, 9, 15, 23, 25, 39\} \subset (\mathbb{Z}/56\mathbb{Z})^*$. Show that $x^2 + 14y^2$ and $2x^2 + 7y^2$ are $\operatorname{GL}_2(\mathbb{Q})$ -equivalent, as forms over the rational numbers. (Hint: denominator 5 works.) Conclude, in particular, that congruence conditions can never separate the primes represented by $x^2 + 14y^2$ and $2x^2 + 7y^2$.
- Q8) Show that $2x^2 + 9x^2$ and $x^2 + 18y^2$ are $\operatorname{GL}_2(\mathbb{Q})$ -equivalent, as forms over the rational numbers. (Hint: denominator 9 works.) Show however, that $2x^2 + 9y^2$ and $x^2 + 18y^2$ are in different genera. (If they represent the same vaues in $(\mathbb{Z}/72\mathbb{Z})^*$, then the same holds for any divisor of 72.) What differs from the previous exercise?