Primes - Problem Sheet 6 - Solutions

Class number 1 and genus theory

Class number 1

- Q1) Suppose m > 1 is an integer, and $m \neq p^r$ is not a prime power. Show that we can write m = ac, where 1 < a < c, and gcd(a, c) = 1. **Solution:** If $m \neq p^r$, then it has ≥ 2 prime factors. Write $m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. Then $k \geq 2$, and we take $a = p_1^{e_1}$ and $c = p_2^{e_2} \cdots p_k^{e_k}$. If a > c, then swap the two factors. We also have gcd(a, c) = 1 since no prime is shared between a and c.
- Q2) In this exercise we will prove that h(-4n) = 1, for n > 0 if and only if n = 1, 2, 3, 4, 7.
 - i) Show that h(-4n) = 1 for these n, by listing the reduced forms. Solution: This was dealt with on the previous solution sheet.
 - ii) Suppose that n is not a prime power. Use the previous exercises to write down a second reduced form of discriminant -4n. Hint: b = 0. Solution: If $n \neq p^r$, then we can write n = ac, with a < c and gcd(a, c) = 1. Then $ax^2 + cy^2$ is a reduced form of discriminant $0^2 - 4ac = -4n$.
 - iii) Suppose that $n = 2^r$. If $r \ge 4$, show that

$$4x^2 + 4xy + (2^{r-2} + 1)y^2$$

is reduced, and is primitive. Check that h(-4n) > 1, for r = 3, also. **Solution:** On the previous sheet, we saw h(-32) = 2 which has r = 3. We see that $gcd(4, 4, 2^{r-2} + 1) = 1$, since $2^{r-2} + 1$ is odd. So this form is primitive.

To be reduced, we need $|b| \le a \le c$. For $r \ge 4$, we get $c \ge 2^2 + 1 = 5$. Since b = 4 > 0, the edge case automatically holds.

So we get r = 0, 1, 2 corresponding to n = 1, 2, 4.

iv) Suppose now that $n = p^r$, p an odd prime. Suppose n + 1 = ac, where $2 \le a < c$, and gcd(a, c) = 1. Show that

$$ax^2 + 2xy + cy^2$$

is reduced of discriminant -4n.

Solution: We certainly have gcd(a, 2, c) = 1 since gcd(a, c) = 1. So the form is primitive. It is reduced since $2 \le a < c$ by hypothesis. Finally, the discriminant is $D = b^2 - 4ac = 2^2 - 4ac = 4 - 4(n+1) = -4n$.

v) Finally, suppose that $n = p^r$, but that $n + 1 = 2^s$. If $s \ge 6$, show that

$$8x^2 + 6xy + (2^{s-3} + 1)y^2$$

is a reduced form of discriminant -4n. What happens for s = 1, 2, 3, 4, 5?

Solution: It is primitive, since the first coefficients are even, and the last coefficient is odd. $(2^{s-3} \text{ is even, when } s > 4.)$ It is reduced as b = 6 < a = $8 < 2^3 + 1 = 9 \le c$. THe discriminant is

$$6^{2} - 4 \cdot 8 \cdot (2^{s-3} + 1) = 4 - 4 \cdot 2^{s} = 4 - 4(n+1) = -4n.$$

The cases s = 1, 2, 3, 4, 5 correspond to n = 1, 3, 7, 15, 31. Since 15 is not a prime power, it is deal with by the previous part. Finally $h(-4 \cdot 31) = 3$ by explicit computation.

vi) Conclude that h(-4n) = 1 if and only if n = 1, 2, 3, 4, 7. **Solution:** The explicit check shows that n = 1, 2, 3, 4, 7 implies h(-4n) =1. We have also deal with the other cases: if n is not a prime power, h > 1. If n is a prime power, then either n + 1 is not, and h > 1 when $n \neq 1, 2, 4$. Or n+1 is, and so it must be 2^r and h > 1 when $n \neq 1, 3, 7$. Thus h(-4n) = 1 iff n = 1, 2, 3, 4, 7, as claimed.

Elementary genus theory

- Q3) Apply the idea from $p = x^2 + 5y^2$ from Example 6.6, or the general result from Theorem 6.11, to obtain congruence conditions for
 - $p = x^2 + 6y^2$ and the other form of discriminant -24,
 - $p = x^2 + 8y^2$ and the other form of discriminant -32,
 - $p = x^2 + 21y^2$, and the other 3 forms of discriminant -84,

 - p = x² 3y², and the other form of discriminant 12,
 p = x² 10y² and the other form of discriminant 40.
 - $p = x^2 15y^2$ and the other 7 forms of discriminant 60.

Solution: We treat only $x^2 + 21y^2$ because the other cases are similar. The 4 forms are

$$x^{2} + 21y^{2}, 2x^{2} + 2xy + 11y^{2}, 3x^{2} + 7y^{2}, 5x^{2} + 4xy^{2} + 5y^{2}.$$

Using QR, we have $\left(\frac{-84}{p}\right) = 1$ iff $p \equiv 1, 5, 11, 17, 19, 23, 25, 31, 37, 41, 55, 71 \pmod{84}$. Reducing modulo 3 and 7, we see $p = x^2 + 21y^2$ must be 1 (mod 3) and 1, 2, 4

mod * 7. This means $p = x^2 + 21y^2$ represents (at most) 1,25,37 (mod 84). There are 4 forms, each representing at most 3 values. But we have 12 values to hit. So each form represents a distinct coset, and each coset has size 3. The second form represents 11, so would give the coset $11 \{ 1, 25, 37 \} = \{ 11, 23, 71 \}$. The fourth form represents 5, so gives the coset $5 \{ 1, 25, 37 \} = \{ 5, 17, 41 \}$. The third form therefore must represent the remaining values, i.e. the coset $\{19, 31, 55\}.$

By the genus theory theorem, we obtain for $p \neq 2, 3, 7$, that

- $p = x^2 + 21y^2 \iff p \equiv 1, 25, 37 \pmod{84}$ $p = 2x^2 + 2xy + 11y^2 \iff p \equiv 11, 23, 71 \pmod{84}$ $p = 3x^2 + 7y^2 \iff p \equiv 19, 31, 55 \pmod{84}$ $p = 5x^2 + 4xy + 5y^2 \iff p \equiv 5, 17, 41 \pmod{84}$
- Q4) It is not possible to obtain a congruence condition for $p = x^2 + 56y^2$, even by using the genus theory Theorem 6.11. What is the best result you can obtain

for $p = x^2 + 56y^2$, and the other 7 forms of discriminant -224? Hint: it *is* possible to give congruence conditions for some of the forms. **Solution:** Using genus theory, we obtain the following

$$p = \begin{cases} x^2 + 56y^2 \\ 8x^2 + 8xy + 9y^2 \end{cases} \iff p \equiv 1, 9, 25, 57, 65, 81, 113, 121, 137, 169, 177, 193 \pmod{224} \\ p = \begin{cases} 4x^2 + 4xy + 15y^2 \\ 7x^2 + 8y^2 \end{cases} \iff p \equiv 15, 23, 39, 71, 79, 95, 127, 135, 151, 183, 191, 207 \pmod{224} \end{cases}$$

which can't be improved upon.

But we also obtain

$$p = \begin{cases} 3x^2 \pm 2xy + 19y^2 & \iff p \equiv 3, 19, 27, 59, 75, 83, 115, 131, 139, 171, 187, 195 \pmod{224} \\ p = \begin{cases} 5x^2 \pm 4xy + 12y^2 & \iff p \equiv 5, 13, 45, 61, 69, 101, 117, 125, 157, 173, 181, 213 \pmod{224} \end{cases}$$

both of which give pure congruence conditions valid for each of the individual forms: the forms differing by \pm obviously represent the same values.

Q5) Show that the values in $(\mathbb{Z}/D\mathbb{Z})^*$ represented by f(x, y), a form of discriminant $D \equiv 1 \pmod{4}$ form a coset of H (the values of the principal form), in ker χ . Solution: Form $f(x, y) = ax^2 + bxy + cy^2$ has discriminant $D \equiv 1 \pmod{4}$. So b is odd, write b = 2b' - 1. Then we have

$$af(x,y) = (ax + b'y)^{2} + (ax + b'y)(-y) + n(-y)^{2},$$

and the same argument as before works.

Q6) It appears that this is more difficult than I expected!

Suppose that f(x, y) and g(x, y) are two binary quadratic forms of discriminant D. Suppose that f(x, y) and g(x, y) are $\operatorname{GL}_2(\mathbb{Q})$ -equivalent, via a matrix whose entries have denominators all coprime to 2D. Show that f(x, y) and g(x, y) represent the same values in $(\mathbb{Z}/N\mathbb{Z})^*$, for all non-zero N. Conclude that f(x, y) and g(x, y) are in the same genus.

Solution: If f(ax + by, cx + dy) = g(x, y) for some matrix $\frac{1}{m} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Q})$, then by reducing modulo N, where $N \nmid m$, where m is the denominator lem, we see they represent the same values in $(\mathbb{Z}/N\mathbb{Z})$.

Q7) Recall that $x^2 + 14y^2$ and $2x^2 + 7y^2$ are in the same genus, since they both represent $\{1, 9, 15, 23, 25, 39\} \subset (\mathbb{Z}/56\mathbb{Z})^*$. Show that $x^2 + 14y^2$ and $2x^2 + 7y^2$ are $GL_2(\mathbb{Q})$ -equivalent, as forms over the rational numbers. (Hint: denominator 5 works.) Conclude, in particular, that congruence conditions can never separate the primes represented by $x^2 + 14y^2$ and $2x^2 + 7y^2$.

Solution: We have
$$(\frac{-6}{5}x - \frac{7}{5}y)^2 + 14(\frac{1}{5}x - \frac{3}{5}y)^2 = 2x^2 + 7y^2$$
, add the matrix

$$\frac{1}{5} \begin{pmatrix} -6 & -7 \\ 1 & -3 \end{pmatrix}$$

has determinant 1, so is in $\operatorname{GL}_2(\mathbb{Q})$. Since the denominator 5 is coprime to $2 \cdot D = -2^3 \cdot 7$, the previous exercise applies, and shows that $x^2 + 14y^2$ and $2x^2 + 7y^2$ represent the same values in $(\mathbb{Z}/N\mathbb{Z})^*$. So congruences can not separate them.

Q8) Show that $2x^2 + 9x^2$ and $x^2 + 18y^2$ are $GL_2(\mathbb{Q})$ -equivalent, as forms over the rational numbers. (Hint: denominator 9 works.) Show however, that $2x^2 + 9y^2$ and $x^2 + 18y^2$ are in different genera. (If they represent the same vaues in $(\mathbb{Z}/72\mathbb{Z})^*$, then the same holds for any divisor of 72.) What differs from the previous exercise?

Solution: We have $2(\frac{-6}{9}x - \frac{9}{9}y)^2 + 9(\frac{1}{9}x - \frac{12}{9}y)^2 = x^2 + 18y^2$. Moreover, the matrix

$$\frac{1}{9} \begin{pmatrix} -6 & 9\\ 1 & 12 \end{pmatrix}$$

has determinant $1 \neq 0$, so is in $\operatorname{GL}_2(\mathbb{Q})$. However, modulo 3, we see that $2x^2 + 9x^2 \equiv 2x^2 \pmod{3}$ so represents $2 \cdot 1^2 = 2$. Whereas $x^2 + 18y^2 \equiv x^2 \pmod{3}$ so represents $1^2 = 1$. These two forms can't be in the same genus.