
Primes - Problem Sheet 6 - Solutions

Class number 1 and genus theory

Class number 1

Q1) Suppose m > 1 is an integer, and m 6= pr is not a prime power. Show that we
can write m = ac, where 1 < a < c, and gcd(a, c) = 1.
Solution: If m 6= pr, then it has ≥ 2 prime factors. Write m = pe11 p

e2
2 · · · p

ek
k .

Then k ≥ 2, and we take a = pe11 and c = pe22 · · · p
ek
k . If a > c, then swap the

two factors. We also have gcd(a, c) = 1 since no prime is shared between a
and c.

Q2) In this exercise we will prove that h(−4n) = 1, for n > 0 if and only if
n = 1, 2, 3, 4, 7.

i) Show that h(−4n) = 1 for these n, by listing the reduced forms.
Solution: This was dealt with on the previous solution sheet.

ii) Suppose that n is not a prime power. Use the previous exercises to write
down a second reduced form of discriminant −4n. Hint: b = 0.
Solution: If n 6= pr, then we can write n = ac, with a < c and gcd(a, c) = 1.
Then ax2 + cy2 is a reduced form of discriminant 02 − 4ac = −4n.

iii) Suppose that n = 2r. If r ≥ 4, show that

4x2 + 4xy + (2r−2 + 1)y2

is reduced, and is primitive. Check that h(−4n) > 1, for r = 3, also.
Solution: On the previous sheet, we saw h(−32) = 2 which has r = 3.
We see that gcd(4, 4, 2r−2 + 1) = 1, since 2r−2 + 1 is odd. So this form is
primitive.
To be reduced, we need |b| ≤ a ≤ c. For r ≥ 4, we get c ≥ 22 + 1 = 5. Since
b = 4 > 0, the edge case automatically holds.
So we get r = 0, 1, 2 corresponding to n = 1, 2, 4.

iv) Suppose now that n = pr, p an odd prime. Suppose n + 1 = ac, where
2 ≤ a < c, and gcd(a, c) = 1. Show that

ax2 + 2xy + cy2

is reduced of discriminant −4n.
Solution: We certainly have gcd(a, 2, c) = 1 since gcd(a, c) = 1. So the
form is primitive. It is reduced since 2 ≤ a < c by hypothesis. Finally, the
discriminant is D = b2 − 4ac = 22 − 4ac = 4− 4(n+ 1) = −4n.

v) Finally, suppose that n = pr, but that n+ 1 = 2s. If s ≥ 6, show that

8x2 + 6xy + (2s−3 + 1)y2

is a reduced form of discriminant −4n. What happens for s = 1, 2, 3, 4, 5?
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Solution: It is primitive, since the first coefficients are even, and the last
coefficient is odd. (2s−3 is even, when s ≥ 4.) It is reduced as b = 6 < a =
8 < 23 + 1 = 9 ≤ c. THe discriminant is

62 − 4 · 8 · (2s−3 + 1) = 4− 4 · 2s = 4− 4(n+ 1) = −4n .

The cases s = 1, 2, 3, 4, 5 correspond to n = 1, 3, 7, 15, 31. Since 15 is not a
prime power, it is deal with by the previous part. Finally h(−4 · 31) = 3 by
explicit computation.

vi) Conclude that h(−4n) = 1 if and only if n = 1, 2, 3, 4, 7.
Solution: The explicit check shows that n = 1, 2, 3, 4, 7 implies h(−4n) =
1. We have also deal with the other cases: if n is not a prime power, h > 1.
If n is a prime power, then either n+ 1 is not, and h > 1 when n 6= 1, 2, 4.
Or n+ 1 is, and so it must be 2r and h > 1 when n 6= 1, 3, 7.
Thus h(−4n) = 1 iff n = 1, 2, 3, 4, 7, as claimed.

Elementary genus theory

Q3) Apply the idea from p = x2 +5y2 from Example 6.6, or the general result from
Theorem 6.11, to obtain congruence conditions for
• p = x2 + 6y2 and the other form of discriminant −24,
• p = x2 + 8y2 and the other form of discriminant −32,
• p = x2 + 21y2, and the other 3 forms of discriminant −84,
• p = x2 − 3y2, and the other form of discriminant 12,
• p = x2 − 10y2 and the other form of discriminant 40.
• p = x2 − 15y2 and the other 7 forms of discriminant 60.

Solution: We treat only x2 + 21y2 because the other cases are similar. The 4
forms are

x2 + 21y2, 2x2 + 2xy + 11y2, 3x2 + 7y2, 5x2 + 4xy2 + 5y2 .

Using QR, we have
(−84

p

)
= 1 iff p ≡ 1, 5, 11, 17, 19, 23, 25, 31, 37, 41, 55, 71 (mod 84).

Reducing modulo 3 and 7, we see p = x2+21y2 must be 1 (mod 3) and 1, 2, 4
mod ∗ 7. This means p = x2 + 21y2 represents (at most) 1, 25, 37 (mod 84).
There are 4 forms, each representing at most 3 values. But we have 12 values to
hit. So each form represents a distinct coset, and each coset has size 3. The sec-
ond form represents 11, so would give the coset 11 { 1, 25, 37 } = { 11, 23, 71 }.
The fourth form represents 5, so gives the coset 5 { 1, 25, 37 } = { 5, 17, 41 }.
The third form therefore must represent the remaining values, i.e. the coset
{ 19, 31, 55 }.

By the genus theory theorem, we obtain for p 6= 2, 3, 7, that

p = x2 + 21y2 ⇐⇒ p ≡ 1, 25, 37 (mod 84)

p = 2x2 + 2xy + 11y2 ⇐⇒ p ≡ 11, 23, 71 (mod 84)

p = 3x2 + 7y2 ⇐⇒ p ≡ 19, 31, 55 (mod 84)

p = 5x2 + 4xy + 5y2 ⇐⇒ p ≡ 5, 17, 41 (mod 84)

Q4) It is not possible to obtain a congruence condition for p = x2 + 56y2, even by
using the genus theory Theorem 6.11. What is the best result you can obtain
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for p = x2 + 56y2, and the other 7 forms of discriminant −224? Hint: it is
possible to give congruence conditions for some of the forms.
Solution: Using genus theory, we obtain the following

p =

{
x2 + 56y2

8x2 + 8xy + 9y2
⇐⇒ p ≡ 1, 9, 25, 57, 65, 81, 113, 121, 137, 169, 177, 193 (mod 224)

p =

{
4x2 + 4xy + 15y2

7x2 + 8y2
⇐⇒ p ≡ 15, 23, 39, 71, 79, 95, 127, 135, 151, 183, 191, 207 (mod 224)

which can’t be improved upon.
But we also obtain

p =
{

3x2 ± 2xy + 19y2 ⇐⇒ p ≡ 3, 19, 27, 59, 75, 83, 115, 131, 139, 171, 187, 195 (mod 224)

p =
{

5x2 ± 4xy + 12y2 ⇐⇒ p ≡ 5, 13, 45, 61, 69, 101, 117, 125, 157, 173, 181, 213 (mod 224)

both of which give pure congruence conditions valid for each of the individual
forms: the forms differing by ± obviously represent the same values.

Q5) Show that the values in (Z/DZ)∗ represented by f(x, y), a form of discriminant
D ≡ 1 (mod 4) form a coset of H (the values of the principal form), in kerχ.
Solution: Form f(x, y) = ax2 + bxy + cy2 has discriminant D ≡ 1 (mod 4).
So b is odd, write b = 2b′ − 1. Then we have

af(x, y) = (ax+ b′y)2 + (ax+ b′y)(−y) + n(−y)2 ,

and the same argument as before works.

Q6) It appears that this is more difficult than I expected!
Suppose that f(x, y) and g(x, y) are two binary quadratic forms of discriminant
D. Suppose that f(x, y) and g(x, y) are GL2(Q)-equivalent, via a matrix whose
entries have denominators all coprime to 2D. Show that f(x, y) and g(x, y)
represent the same values in (Z/NZ)∗, for all non-zero N . Conclude that
f(x, y) and g(x, y) are in the same genus.
Solution: If f(ax+ by, cx+ dy) = g(x, y) for some matrix 1

m
( a b
c d ) ∈ GL2(Q),

then by reducing modulo N , where N - m, where m is the denominator lcm,
we see they represent the same values in (Z/NZ).

Q7) Recall that x2 + 14y2 and 2x2 + 7y2 are in the same genus, since they both
represent { 1, 9, 15, 23, 25, 39 } ⊂ (Z/56Z)∗. Show that x2 +14y2 and 2x2 +7y2

are GL2(Q)-equivalent, as forms over the rational numbers. (Hint: denomina-
tor 5 works.) Conclude, in particular, that congruence conditions can never
separate the primes represented by x2 + 14y2 and 2x2 + 7y2.
Solution: We have (−6

5
x− 7

5
y)2 + 14(1

5
x− 3

5
y)2 = 2x2 + 7y2, adn the matrix

1

5

(
−6 −7
1 −3

)
has determinant 1, so is in GL2(Q). Since the denominator 5 is coprime to
2 · D = −23 · 7, the previous exercise applies, and shows that x2 + 14y2 and
2x2 + 7y2 represent the same values in (Z/NZ)∗. So congruences can not
separate them.
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Q8) Show that 2x2 + 9x2 and x2 + 18y2 are GL2(Q)-equivalent, as forms over the
rational numbers. (Hint: denominator 9 works.) Show however, that 2x2+9y2

and x2 + 18y2 are in different genera. (If they represent the same vaues in
(Z/72Z)∗, then the same holds for any divisor of 72.) What differs from the
previous exercise?
Solution: We have 2(−6

9
x− 9

9
y)2 + 9(1

9
x− 12

9
y)2 = x2 + 18y2. Moreover, the

matrix
1

9

(
−6 9
1 12

)
has determinant 1 6= 0, so is in GL2(Q).

However, modulo 3, we see that 2x2 + 9x2 ≡ 2x2 (mod 3) so represents
2 · 12 = 2. Whereas x2 + 18y2 ≡ x2 (mod 3) so represents 12 = 1. These two
forms can’t be in the same genus.
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