
Primes - Problem Sheet 7 - Solutions

Composition of quadratic forms

Q1) Let f = (a, b, c) be a primitive form, and M any integer. Show that f repre-
sents some integer coprime to M . Show also that we can assume f properly
represents some integer coprime to M .
Solution: Pick a prime p dividing M . There are 3 (overlapping) cases to
consider:

If p - a, then we can pick x, y such that p - x and p | y. Then f(x, y) =
ax2 + bxy + cy2 is not divisible by p, so is prime to p.

Similarly if p - c.
Otherwise p | a, c, so p - b. Then pick x, y such that p - x, y. And f(x, y) is

coprime to p.
Do this for every prime, and choose compatible x, y. Then f(x, y) is coprime

to M .

Q2) Suppose that F is (a) direct composition of f and g. If f ∼ f ′ and g ∼ g′,
and F ′ ∼ F , show that F ′ is a direct composition of f ′ and g′. So we can use
the Dirichlet composition to find the direct composition with explicit bilinear
forms.
Solution: We sketch the details only. If f(px + qy, rx + sy) = f ′(x, y), and

f(x, y)g(z, w) = F (B1(x, y; z, w), B2(x, y; z, w)) ,

then

f ′(x, y)g(z, w) = f(px + qy, rx + sy)g(z, w)

= F (B1(px + qy, rx + sy; z, w), B2(px + qy, rx + sy; z, w)) ,

where

B1(px + qy, rx + sy; z, w) = a1(px + qy)z + b1(px + qy)w + c1(rx + sy)z + d1(rx + sy)w

= (a1p + c1r)xz + (b1p + d1r)xw + (a1q + c1s)yz + (b1q + d1r)yw

is another integral bilinear form.
This show that F is the composition of f ′ and g. To be direct, we need that

f ′(1, 0) = +(a′1b
′
2 − a′2b

′
1) .

But f ′(1, 0) = f(p, r) = ap2 + bpr + cr2, and

a′1b
′
2 − a′2b

′
1 = (a1p + c1r)(b2p + d2r)− (a2p + c2r)(b1p + d1r)

= (a1b2 − a2b1︸ ︷︷ ︸
=a

)p2 + (a1d2 + c1b2 − a2d1 − c2b1)pr + ( c1d2 − c2d1︸ ︷︷ ︸
c, see next exercise

)r2

...

= f ′(1, 0) .
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For g, we have g(1, 0) = a1c2 − a2c1, and

a′1c
′
2 − a′2c

′
1 = (a1p + c1r)(a2q + c2s)− (a1q + c1s)(a2p + c2r)

(a1c2 − a2c1)(ps− qr) ,

since ps− qr = 1 as the equivalence is proper.
Finally, if F (x, y) = F ′(ax + by, cx + dy), then

f(x, y)g(z, w) = F ′(aB1(x, y; z, w) + bB2(x, y; z, w), cB1(x, y; z, w) + dB2(x, y; z, w)) .

But a linear combination of two bilinear forms, is bilinear. Hence F ′ is a
composition of f and g. For directness, we have

aB1 + bB2 = (aa1 + ba2)xz + (ab1 + bb2)xw + (ac1 + bc2)yz + (ad1 + bd2)yw

cB1 + dB2 = (a1c + a2d)xz + (b1c + b2d)xw + (cc1 + c2d)yz + (cd1 + dd2)yw .

And

a′1b
′
2 − a′2b

′
1 = (aa1 + ba2)(b1c + b2d)− (a1c + a2d)(ab1 + bb2)

= (a1b2 − b1a2)(ad− bc)

= a1b2 − a2b1 = f(1, 0)

since the transformation ( a b
c d ) has determinant ad− bc = 1. Similary for g.

Q3) Suppose that pq = X2 + 14Y 2 and q = 2a2 + 7b2. By considering the compo-
sition

p(2a2 + 7b2)(2a2 + 7b2) = (X2 + 14Y 2)(2a2 + 7b2)

= 2(aX + 7bY )2 + 7(−bX + 2aY )2 .

By reducing 2a2 + 7b2, and X2 + 14Y 2 modulo q, show that we may choose
the sign ±a,±b,±X,±Y , so that

q | aX + 7bY,−bX + 2aY ,

hence conclude that p is represented by 2x2 + 7y2.
Solution: We can assume q 6= 2, 7. If q = 2, and 2p = X2 + 14Y 2, then 2 | X,
meaning X = 2X ′, and so we get

2p = 4(X ′)2 + 14Y 2 =⇒ p = 2(X ′)2 + 7Y 2 .

Similarly for q = 7.
Let us reduce 2a2 + 7b2 and X2 + 14Y 2 modulo q. We have

X2 + 14Y 2 ≡ 2a2 + 7b2 ≡ 0 (mod q) ,

so

14 ≡ −(X/Y )2 (mod q)

7/2 ≡ −(a/b)2 (mod q)

14 ≡ −(2a/b)2 (mod q)

14 ≡ −(7b/a)2 (mod q)

and we get

X/Y ≡ ±2a/b =⇒ Xb± 2aY ≡ 0

X/Y ≡ ±7b/a =⇒ Xa± 7bY ≡ 0 .
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We have

2a/b = ±7b/a =⇒ 2a2 = ±7b2 ,

so the sign must be −. (If also 2a2− 7b2 ≡ 0, then we obtain 4a2 ≡ 0 (mod q),
which means q | a, which then leads to q | b, and a contradiction.)

Overall, we have

Xb± 2aY ≡ 0

Xa∓ 7bY ≡ 0

Changing the sign of Y swaps the ± signs, so we can assume the first sign is
− and the second is +. Hence we get the required divisibility conditions.

Then

q2p = 2(aX + 7bY )2 + 7(−bX + 2aY )2

implies

p = 2(
aX + 7bY

q
)2 + 7(

−bX + 2aY

q
)2

so p is represented by 2x2 + 7y2, as claimed.

Q4) Suppose that F = (A,B,C) is the composition of f = (a, b, c) and g =
(a′, b′, c′) via

f(x, y)g(z, w) = F (a1xz + b1xw + c1yz + d1yw,

a2xz + b2xw + c2yz + d2yw) .

Suppose all 3 forms have the same discriminant D 6= 0.
i) By specialising variables x, y, w, z prove that

aa′ = Aa21 + Ba1a2 + Ca22

ac′ = Ab21 + Bb1b2 + Cb22

ab′ = 2Aa1b1 + B(a1b2 + a2b1) + 2Ca2b2 .

Hint: try x = z = 1, y = w = 0 for the first.

ii) Prove that a2(b′2 − 4a′c′) = (a1b2 − a2b1)
2(B2 − 4AC), hence conclude

f(1, 0) = a = ±(a1b2 − a2b1) .

iii) Prove that

g(1, 0) = a′ = ±(a1c2 − a2c1)

Solution: a) With x = z = 1, y = w = 0, we get

f(1, 0)g(1, 0) = F (a1, a2) =⇒ aa′ = Aa21 + Ba1a2 + Ca22 .

For the second use x = 1, y = 0, z = 0, w = 1. For the third, use x = 1, y = 0,
and z = 1 = w, to get

a(a′ + b′ + c′) = F (a1 + b1, a2 + b2)

= A(a1 + b1)
2 + B(a1 + b1)(a2 + b2) + C(b1 + b2)

2

then subtract the first two results.
b) Then follows directly by taking (ab′)2 − 4(aa′)(ac′) from above. Then

take square roots.
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c) We also have

ca′ = Ac21 + Bc1c2 + Cc22 (x, y, z, w) = (0, 1, 1, 0)

ba′ = 2Aa1c2 + (c1a2 + a1c2)B + 2a2c2B (1, 1, 1, 0)− (1, 0, 1, 0)− (0, 1, 1, 0) .

Then forming
(a′b)2 − 4(a′a)(a′c)

gives the result after taking square roots.
Extra) We also obtain, by similar means

c = ±(c2d1 − c1d2)

c′ = ±(b2d1 − b1d2)

Q5) Recall that a group of order 4 is is isomorphic to either Z/2Z × Z/2Z, or to
Z/4Z. Determine the class group C(D) for D = −56, D = −68, D = −84,
D = −96. Do you see any connection between C(D) and when genus theory
works? Hint: to distinguish between Z/Z2×Z/2Z and Z/4Z you only need to
check whether some form is not properly equivalent to its inverse. Why? This
is easy to do using reduced forms.
Solution: To distinguish between Z/2Z×Z/2Z and Z/4Z, we need to find an
element of order 4. This means an element whose square is not the identity. An
element which squares to the identity is its own inverse, which means the form
and its inverse will be properly equivalent. The inverse of (a, b, c) is (a,−b, c).
Assume (a, b, c) is a reduce form, then (a, b, c) ∼ (a,−b, c) iff (a,−b, c) is not
reduced.

For D = −56, the reduced forms are x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2.
We see that (3,±2, 5) are non-equivalent as they are both reduced. Hence
C(−56) ∼= Z/4.

For D = −68, the reduced forms are (1, 0, 17), (2, 2, 9), (3,−2, 6), (3, 2,−6).
Again (3,±2,−6) are inverses but are not properly equivalence. Hence C(−68) ∼=
Z/4Z.

For D = −84, the reduced forms are (1, 0, 21), (2, 2, 11), (3, 0, 7), (5, 4, 5).
Every form is properly equivalent to its inverse since (a,−b, c) and (a, b, c) do
not appear together on the list. Hence C(−84) ∼= (Z/2Z)× (Z/2Z).

For D−96, the reduced forms are (1, 0, 24), (3, 0, 8), (4, 4, 7), (5, 2, 5), so again
C(−96) ∼= (Z/2Z)× (Z/2Z).

Once can observe that genus theory works when C ∼= (Z/2Z)× (Z/2Z), and
does not work when C ∼= Z/4Z. Generally it is true that genus theory works
when C ∼= (Z/2Z)n.

Q6) It is known that any ternary quadratic form f(x, y, z) of determinant det(f) =
1 is properly equivalent to x2+y2+z2. (See Corollary 2 [Cassels 2008, p. 138].)
Assuming this, show that there is no (nice!) notion of composition of integral
ternary quadratic forms of fixed determinant. Hint: we would (want to) have

(x2+y2+z2)(u2+v2+w2) = (B1(x, y, z;u, v, w))2+(B2(x, y, z;u, v, w))2+(B3(x, y, z;u, v, w))2 ,

where Bi(x, y, z;u, v, w) = a1,1xu + · · · + a3,3zw are integral bilinear forms.
Consider representations of 15 = 3× 5 by x2 + y2 + z2.
Solution: If such a composition existed, then we would have a way of writing
15 = 3× 5 as a sum of 3 squares: we take the representations 3 = 12 + 11 + 12
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and 5 = 22 + 12 + 02, and run them through the composition. But 15is not the
sum of 3 squares: 15 = x2 + y2 + z2 implies x, y, z ≤ 3. A brute force check
shows that this is not possible.

Q7) Suppose D < 0 is a discriminant, and that q is a prime such that
(
D
q

)
= 1.

Show that

h(D) ≥ log

(
1

4
(|D|)

)
/ log q .

Hint: some g(x, y) of discriminant D represents q. If g has order M in the
class group, then qM is represented by the principal form. Put a bound on qM .
Remark: With slightly stronger analysis, one can prove the bound

h(D)− 1 ≥ log

(
1

4
(|D|+ 1)

)
/ log(q) .

For this, see the paper “Über die Klassenzahl imaginär-quadratischer Zahlkörper”,
Nagel 1922.
Solution: We have g(x, y) = q. Let g have order M , so qM = x2 + xy + (1−
D)/4y2 or x2−D/4y2. (Represented by the principal form as gM = principal.)
Since q is prime, y = 0 cannot be a solution. So we get

qm = x2+xy+(1−D)/4y2 = (x+y/2)2−D(y/2)2 ≥ 0−D ·(1/2)2 = −D/4 = |D|/4

(Same bound holds if we have the form x2 −D/4y2.)
Now m divides h(D), which means h(D) ≥ m. We find that

h(D) ≥ m = log(−D/4)/ log(q) .
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