Primes - Problem Sheet 9 - Solutions Cubic reciprocity

Q1) With cubic reciprocity, we can handle another one of Euler's conjectures:

$$4p = x^{2} + 243y^{2} \iff \begin{cases} p \equiv 1 \pmod{3} \text{ and} \\ 3 \equiv a^{3} \pmod{p} \end{cases}$$

Let $p \equiv 1 \pmod{3}$ be prime.

i) Use the proof of $p = x^2 + 27y^2$ to show that

$$4p = a^2 + 27b^2$$

where we can take $a \equiv 1 \pmod{3}$.

Solution: We have $4p = (2a - 3b)^2 + 27b^2$, where A = 2a - 3b Then $A \equiv 2a$. By taking $\pm A$, we get $A \equiv 1 \pmod{3}$. (Take +, for $a \equiv 2 \pmod{3}$ and -, for $a \equiv 1 \pmod{3}$. We can't have $a \equiv 0 \pmod{3}$, else $3 \mid p$.)

ii) Conclue that $\pi = (a + 3\sqrt{-3}b)/2$ is a primary prime of $\mathbb{Z}[\pi]$, and that $p = \pi \overline{\pi}.$

Solution: An element $\frac{x+y\sqrt{-3}}{2}$ is in $\mathbb{Z}[\omega]$ if and only if $x \equiv y \pmod{2}$. We have $a - 3b \equiv a - b \pmod{2}$. But by reducing $4p = a^2 + 27b^2 \mod{2}$, we get 0 = a + b, so yes $\pi \in \mathbb{Z}[\omega]$.

We easily see $\pi \overline{\pi} = p$, so π is prime: $N(\pi) = p$. Finally π is primary? We need to check $\pi \equiv \pm 1 \pmod{3}$. But yes:

$$\pi = \frac{1}{2}(3a' + 1 + 3\sqrt{-3}b) = \frac{1}{2} \equiv 2^{-1} \equiv 2 \equiv -1 \pmod{3}.$$

iii) For $\pi = (a + 3\sqrt{-3}b)/2$, show that the supplementary laws can be written as

$$\left(\frac{\omega}{\pi}\right)_3 = \omega^{2(a+2)/3}$$
$$\left(\frac{1-\omega}{\pi}\right)_3 = \omega^{(a+2)/3+b}$$

Solution: We need to write $\pi = -1 + 3m + 3n\omega$. We have

$$\pi = \frac{1}{2}(3a' + 3b + 1 - 3b + 3\sqrt{-3}b) = -1 + \frac{3}{2}(a' + b + 1) + 3b\underbrace{\frac{-1 + \sqrt{-3}}{2}}_{\omega}$$

Then

$$\left(\frac{\omega}{\pi}\right) = \omega^{m+n} = \omega^{\frac{1}{2}(a'+b+1)+b} = \omega^{\frac{1}{2}(a'+3b+1)}$$

But $\frac{1}{2}(a'+3b+1) = \frac{1}{2}((a-1)/3+3b+1) = \frac{1}{6}(a+2+9b)$. Since $2^{-1} = \frac{1}{6}(a+2+9b)$. $2 \pmod{3}$, we get

$$\omega^{\frac{1}{2}(a'+3b+1)} = \omega^{\frac{2}{3}(a+2+9b)} = \omega^{\frac{2}{3}(a+2)+3\frac{b}{2}} = \omega^{2(a+2)/3}$$

Similarly

$$\left(\frac{1-\omega}{\pi}\right)_3 = \omega^{2m} = \omega^{(a'+b+1)},$$

but

$$a' + b + 1 = \frac{1}{3}(a - 1) + b + 1 = \frac{a + 2}{3} + b$$

iv) Conclude $\left(\frac{3}{\pi}\right)_3 = \omega^{2b}$. Solution: This follows by writing $3 = -\omega^2(1-\omega)^2$. So

$$\left(\frac{3}{\pi}\right)_3 = \omega^{4(a+2)/3+2(a+2)/3+2b} = \omega^{2(a+2)+2b} = \omega^{2b},$$

since $a \equiv 1 \pmod{3}$.

v) Use this to prove Euler's conjecture, above. Solution: Suppose $4p = x^2 + 243y^2$. Then $p \equiv 1 \pmod{3}$ by reducing modulo 3. Also we have

$$\pi = \frac{1}{2}(x+9\sqrt{-3}y)\,,$$

where π can be assumed to be a primary prime of $\mathbb{Z}[\omega]$. Then b = 3y, so that

$$\left(\frac{3}{\pi}\right)_3 = \omega^{2 \times 3y} = 1$$

This means $3 \equiv a^3 \pmod{3}$.

Conversely, suppose $p \equiv 1 \pmod{3}$ and $3 = a^3 \pmod{3}$. Then write $4p = a^2 + 27b^2$, with $a \equiv 1 \pmod{3}$. We need to show $3 \mid b$. But since $3 \equiv a^3 \pmod{3}$, we have $2b \equiv 0 \pmod{3}$, whence $3 \mid b$. So

$$4p = x^{2} + 27(3(b/3))^{2} = x^{2} + 243(b/3)^{2}.$$

Modular forms

- Q1) Recall that M_k denotes the space of weight k modular forms.
 - i) Show that M_k is a \mathbb{C} -vector space.
 - ii) If k is odd, show that $M_k = \{0\}$. Hint: consider $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - iii) Let $f \in M_k$ and $g \in M_\ell$ be two modular forms. Show that fg is also a modular form, and that $fg \in M_{k+\ell}$.

Remark: Don't worry too much about the holomorphic at $i\infty$ condition! Solution: For i) this is a straight-forward check. If f and g are weight k modular forms, then one sees f + g transforms as a weight k modular form by factoring out $(cz + d)^k$.

For ii), let f be a weight k modular form. we have that $f(-I \cdot z) = (0z - 1)^k f(z) = (-1)^k f(z)$. So if k odd, then f(z) = -f(z) for all z, so f is identically 0.

For iii), in fg, we have a factor $(cz+d)^k \times (cz+d)^\ell = (cz+d)^{k+\ell}$, so fg is a weight $k + \ell$ modular form.

PRIMES - PROBLEM SHEET 9 - SOLUTIONS

Q2) Find a relation between E_4E_6 and E_{10} . Hence derive an identity for σ_9 as a 'convolution' of σ_3 and σ_5 of the form

$$\sigma_9(n) = a\sigma_5(n) + b\sigma_3(n) + c\sum_{i=1}^n \sigma_3(i)\sigma_5(n-i) \,.$$

(Here a, b, c are certain rational numbers you should find.) Solution: Since dim $M_1 0 = 1$, we have that $E_4 E_6 = E_1 0$ since the first coefficient of both sides is 1. Comparing other coefficients gives

$$\sigma_9(n) = \frac{21}{11}\sigma_5(n) - \frac{10}{11}\sigma_3(n) + \frac{5040}{11}\sum_{i=1}^n \sigma_3(i)\sigma_5(n-i).$$