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1 Background Reading
My background reading has primarily consisted of:

Dan’s Hyperlogrithms: from [2]
Dan introduces a slight variant of the usual hyperlogarithm by using the change of variables

z 7→ 1/z on P1(C) to allow extra types of differential forms. This leads to the function H(a0 |
a1, . . . , an // x | an+1), which reduces to the usual hyperlogarithm when x =∞.

With the extra flexibility of a new type of variable x gives, Dan describes a method to
write a hyperlogarithm in n variables as the sum of hyperlogarithms in ≤ n − 2 variables,
modulo products. This is built up in stages by first relating H(a0 | a1, . . . , an // x | an+1 to
H(a0 | a1, . . . , x, . . . , an // ai | an+1) (obtained by swapping ai ↔ x) and using this to build up
to an arbitrary permutation of a1, . . . , an.

By combining these Dan can write each terms of shuffle product H(a0 | a1a2�a3 . . . an | an+1)
as H(a0 | a1, . . . , an | an+1) and sums of hyperlogarithms in ≤ n − 2 variables. And this gives
the desired expression.

Symbols of Polylogarithms: from [8] and [3]
The symbol of a polylogarithm (or more generally a transcendental function defined as the

iterated integral of certain differential forms) is a kind of algebraic invariant attached to the
function. It captures the differential properties of the function without worrying about the
analytic details and the multivalued-ness.

Given a function F =
∫ z

0 d log(f1) ◦ · · · ◦ d log(fn), all we need to know to recover F is the
differential forms and their order. The object f1(z)⊗· · ·⊗fn(z) tells us this, and this is essentially
the symbol of F . It is possible to express multiple polylogarithms as a sum of terms of this form,
to write their symbol

The algebraic operations of addition and multiplication on polylogarithms map to addition and
shuffle product of symbols, so that functional equations between polylogrithms become algebraic
equations on symbols. This gives a way to check whether candidate identities could be correct.
With careful use one can even derive functional equations by integrating the symbol.

Goncharov’s Geometry of Trilogarithms: from [6] and [5]
The dilogarithm can be interpreted geometrically as a configuration of 4 points on P1(C),

with the 5-term functional equation coming by removing each point of a configuration of 5 points
in turn.

Goncharov gives a similar interpretation for the trilogarithm, as a special configuration of 6
points in P2(C). Functional equations arise by removing each point of a configuration of 7 points
in turn. From this he can derive a new, general, functional equation for the trilogarithm.

This geometric view point allowed Goncharov to explicitly write down the regulator of
K-theory, and prove Zagier’s conjecture in the case n = 3.

Aomoto Polylogarithms and Double Scissors Congruence Groups: from [7] and [1]
Aomoto polylogarithms give another geometric viewpoint and generalisation of polylogarithms.

One can write a (multiple) polylogarithm as an iterated integral, which one can then view as an
integral over a simplex in n-space. One can also naturally view the differential form as being
associated to another simplex.

Aomoto is a vast generalisation of this in terms of what simplices are used. Any pair of
admissible simplices (L,M) in Pn can be used to define an integration region ∆M and a canonical
differential form ωL to integrate on this region. Aomoto polylogarithms satisfy the properties

1



of non-degeneracy, skew-symmetry, additivity in L and in M , and projective invariance. These
algebraic properties can be abstracted out to give the definition of the double scissors congruence
groups over an arbitrary field, giving some notion of an abstract (Aomoto) polylogarithm.

These double scissors congruence groups, and whether they fit together into a Hopf algebra,
have some deep connections with questions and conjectures about K-theory.

2 Summary of Research Work
I have clarified where my symmetric insertion result∑

σ∈S2n+1

ζ(2aσ(1) , 1, 2aσ(2) , 3, . . . , 2aσ(2n−1) , 1, 2aσ(2n) , 3, 2aσ(2n+1)) ∈ Qπwt

fits in the context of known and conjectured results. Borwein, Bradley, and Broadhurst only
have a conjectural evaluation of ζ({2m, 1, 2m, 3}n, 2m) as an explicit rational mutiple of πwt.
Symmetric insertion shows that it is indeed some rational multiple of πwt.

I have written this result up and uploaded it to the arXiv http://arxiv.org/abs/1306.6775.

I have also spent some time looking at certain properties of the level filtration of the Hoffman
basis of multiple zeta values. Brown’s development of Motivic MZVs introduces the filtration
Hi = { qζ(2s and 3s) | q ∈ Q and ≤ i 3s }, and as pointed out by Terasoma leads to HiHj ⊂
Hi+j .

Using the zeta_proc routines for Maple to decompose some products ζ(w)ζ(w′) into the
Hoffman basis, shows up some interesting features. For example:

ζ2223ζ2 = 10265472
2555171 ζ32222 −

9915552
2555171ζ23222 −

10397160
2555171 ζ22322 −

5838895
2555171ζ22232 + 37505700

2555171 ζ22223

ζ22ζ322 = 370811826
12775855 ζ32222 + 520697499

12775855 ζ23222 + 85939563
2555171 ζ22322 + 556488492

12775855 ζ22232 + 6514704
2555171ζ22223

It is curious that the same large (prime) number 2555171, or a small multiple of it 12775855 =
5× 2555171, appears in all the denominators of both decompositions. A similar observation holds
in other cases too.

For level 1 times level 0, I can explain this observation by giving an explicit formula for
the decomposition of ζ(2a, 3, 2b)ζ(2c) using Zagier’s matrices from [9]. The inverse of the
(a+ b+ c+ 1)× (a+ b+ c+ 1) matrix is the source of the denominators. I unsure how to explain
it for higher levels.

As mentioned above, Dan describes a general method for writing hyperlogarithms as sums of
hyperlogs in fewer variables, modulo products. At the end of the paper he gives an expression for
H(a | b, c, d, e | f) in terms of I31(x, y) and polylogarithms I4(x). Unfortunately his expression is
incorrect as the symbols do not agree.

I have spent time understanding Dan’s method with goal of being able to correct his expression.
Unfortunately Dan makes use of some unspecified identities to write I13(x, y) and I22(x, y) in
terms of I31(x, y), so I have not been able to correct his expression. However I have successfully
implemented his method to produce a correct identity for H(a | b, c, d, e | f) in terms of I13, I22, I31
and I4. Using some identities relating I22 and I13 with I31 provided by Gangl, I can rewrite it
purely in terms of I31 and I4 to the same end.

Dan neglects products throughout his method, so the identities he obtains are only true
modulo products. Whilst working through the steps of his method, I have also restored the
neglected product terms, and so can give unconditionally correct identities. For example, using
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the shorthand notation [x, y]11 = I11(x, y) and so on, along with abc = cr(a, b, c,∞) = a−c
b−c and

abcd = cr(a, b, c, d) = (a−c)(b−d)
(a−d)(b−c) , I have:

H(a | b, c, d | e) +H(a | c, b, d | e) =
+ {−[dab]3 + [deb]3 − [dab]1[bea, bea]11 − [bea]1[dab]2} − [dea]1[bea, bea]11 + [bea]1[bea, dea]11

− 2{−[cab]3 + [ceb]3 − [cab]1[bea, bea]11 − [bea]1[cab]2}+ [bea]1[cea, bea]11 − [bea, bea, bea]111

− {−[cbda]3 + [cbde]3 − [cbda]1[abce, abce]11 − [abce]1[cbda]2}+ [abde]1[abce, abce]11 − [abce]1[abce, abde]11

− {−[bca]3 + [bce]3 − [bca]1[abce, abce]11 − [abce]1[bca]2}+ [abce, abce, abce]111

+ {−[adc]3 + [edc]3 − [adc]1[cae, cae]11 − [cae]1[adc]2}+ [cae]1[cae, acde]11 − [acde]1[cae, cae]11

− 2{−[abc]3 + [ebc]3 − [abc]1[cae, cae]11 − [cae]1[abc]2}+ [cae]1[acbe, cae]11 − [cae, cae, cae]111

One observation here is that the overall expression must be symmetric under b↔ c, but this
is not readily apparent on the right hand side. In fact under this symmetry line 3 plus line 4
symmetric, and lines 1 plus 2 map into lines 5 plus 6, which is made obvious during the derivation
of the result.

3 Future Plans
One current disadvantage of my implementation of Dan’s method in Mathematica is that an
unnecessary amount of structure present in the method is lost during the computations. It
is an fundamental property of Dan’s method that the number of terms grows rapidly as the
weight increases. Reworking the implementation to keep more of the structure and to keep track
of where each term originates would better help highlight any patterns. Even more so when
including the product terms as well. Once done I will be able to calculate the exact expression
for H(a | b, c, d, e | f), without neglecting products.

Gangl has suggested that writing H(a | b, c, d, e | f) entirely in terms of I31 and polylogs only
may not be the best choice, and that I22 may be a more sensible candidate due to its symmetries.
One wants to get rid of any multiple polylogarithm terms with index 1.

Often it is the case that symmetrising an expression leads to simplification, and more
recognisable structure and patterns. I should try to symmetrise the various expressions I have for
H(a | b, c, d | e) and H(a | b, c, d, e | f) to try and tease out some more structure.

Having various geometric ways of views polylogarithms, it makes sense to ask whether there is
any geometric significance or interpretation of the weight 4 expression. For example in the Aomoto
settings it is know that every simplex in P2 can be decomposed into dilogarithmic simplices, and
every simplex in P3 into trilogarithmic simplices. The appropriate question for P4 is can every
simplex be decomposed into tetralogarithmic simplices and Li2,2-simplices. Maybe the expressions
for H(a | b, c, d, e | f) can shed some light here?

Similarly, is there any interpretation in Goncharov’s trilog configurations for the weight 3
expressions?

Since we can compute the symbol of the trilogarithm, and Goncharov gives a geometric
interpretation of the trilog as a particular configuration of 6 points in P2, (how) can the symbol be
extended to any configuration of points? A geometric interpretation of the weight 3 expressions
may be useful here.

For the usual iterated integrals, there are recursive methods to compute the symbol, using
that fact that dF can be expressed as lower weight iterated integrals, to build up the symbol up
iteratively. In [4], Goncharov gives a formula for dAomoto (as a special case of the differential of the
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period of a variation of Hodge-Tate structures), in terms of lower weight Aomoto polylogarithms.
The same iterative procedure should allow me to build up the symbol of an Aomoto polylogarithm.

There are explicit formulae for the general Aomoto dilog and trilog in terms of classical
polylogarithms. I would be able to use these to verify my computation of the Aomoto symbol for
weights 2 and 3, by checking that it agrees with the symbol of the classical polylog expressions.
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