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Identities arising from coproducts on MZVs and MPLs

1 Introduction
Multiple zeta values (MZVs) are a highly mysterious set of real numbers defined by the following
nested sums

ζ(si, . . . , sk) :=
∑

1≤n1<···<nk

1
ns1

1 · · ·n
sk

k

,

for si > 0 ∈ Z, which one can view as a multi-variable generalisation of the Riemann zeta values.
For convergence we require sk ≥ 2.

The main source of interest in studying MZVs occurs in trying to gain a full understanding their
sructure and of the relations they satisfy. There are many folklore conjectures [2] describing the
structure of MZVs, which so far remain unproven, such as the direct sum conjecture which claims
the Q-vector space of MZVs is weight graded, the dimension conjecture giving dimQ Zk = dk, where
dk satisfies the recurrence relation dk = dk−2+dk−3, d2 = d3 = d4 = 1, and the basis conjecture [12]
which refines the dimension conjecture with a proposed basis {ζ(w) | w contains only 2s and 3s}.

Recently some progress on these conjectures has been made from the motivic [4, 5, 10]viewpoint,
wherein one obtains a purely algebraic lifting of the MZVs to motivic MZVs capturing the essential
properties of but eschewing the analytic awkwardness. By definition one gets the weight grading,
since motivic MZVs live in a Hopf algebra graded by weight. Brown and Zagier have established
that basis conjecture for motivic MZVs, and so deduce from the period map that the proposed
basis is certainly a spanning set for weight k MZVs [4, 14]. This gives another proof of the known
inequality dimQ Zk ≤ dk. Since it is not even know that dimQ Z5 > 1, these conjecture are still
far from being resolved for real MZVs.

Living in a Hopf algebra entails the existence of a coproduct on motivic MZVs, a structure
which conjecturally exists on the real MZVs, but is not readily apparent. This coproduct provides
a much more rigid structure on the set of motivic MZVs, allowing new techniques of proof.

Multiple zeta values can be viewed as special values of multiple polylogarithms (MPLs), a set
of functions defined as follows

Lis1,...,sk
(z1, . . . , zk) :=

∑
1≤n1<···<nk

zn1
1 · · · z

nk

k

ns1
1 · · ·n

sk

k

,

so that ζ(s1, . . . , sk) = Lis1,...,sk
(1, . . . , 1). These functions are a multi-variable generalisation of

polylogarithms, themselves a generalisation of the ordinary logarithm function.
Typically one is interested in finding functional equations for polylogarithms and multiple

polylogarithms, in no small part due to their connection to algebraic K-theory via Zagier’s
conjecture – sufficiently general functional equations for the polylogarithms should lead to an
explicit description of K groups in terms of generators and relations. Goncharov’s work on the
trilogarithm, and its generic functional equation arising from the triple ratio, has resolved the
n = 3 case, giving a description of K5(F ), and expressing ζF (3) n terms of Li3 [11].

At weight 4 or higher, polylogarithms alone are no longer sufficient to express all arising
iterated integrals; one genuinely needs to incorporate multiple polylogarithm into the setup, and
understand their identities and functional equations alongside the polylogarithms. Moreover,
these kind of special functions arise in numerous calculations in High Energy Physics, usually
producing exceedingly complicated answers. A good understanding of the relations and functional
equations between different MPLs is essential to drastically simplifying such calculations, hence
the interest.
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To a multiple polylogarithm, one can attach an algebraic invariant called the symbol which
captures the differential properties of the function. The symbol can be built up iteratively from
the total derivative of the function, but also has descriptions in terms of trees, in terms of polygons,
and in terms of maximally iterating a coproduct. [13, 10, 8]

The symbol reflects in an algebraic manner the functional equations MPLs satisfy. The symbol
of a functional equation should always simplify to 0 using the rules of tensor calculus. This can
be reverse engineered to derive functional equations by taking a linear combination of suitably
many arguments, and solving to make the resulting symbol identically 0.

2 Cyclic insertion conjecture on MZVs
The cyclic insertion conjecture of Borwein, Bradley, Broadhurst, and Lisoněk [1] claims the
following identity holds on MZVs

Conjecture 2.1 (Cyclic insertion).∑
cyclic shifts of ai

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n) ?= πwt

(wt + 1)!

So far, the only explicit identity which have been proven in this direction is the Bowman-
Bradley theorem [3], stating

Theorem 2.2 (Bowman-Bradley).∑
compositions a0 + · · ·+ a2n = N

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n) = ζ(2N � {1, 3}m)

= 1
2m+ 1

(
N + 2m
N

)
πwt

(wt + 1)!

By making use of the motivic MZV framework, I have shown that inserting only permutations
of fixed blocks 2ai is sufficient to get a rational multiple of πwt, so that the Bowman-Bradley
theorem breaks up into smaller subsums.

Theorem 2.3 (C, Symmetric Insertion, [6]).∑
permutations of ai

ζ(2a0 , 1, 2a1 , 3, . . . , 1, 2a2n−1 , 3, 2a2n) ∈ πwt

(wt + 1)!Q

A similar-looking conjectural family of identities is presented by Hoffman [2, Equation 5.6]

Conjecture 2.4 (Hoffman).

2ζ(3, 3, 2n)− ζ(3, 2n, 1, 2) = −ζ(23+n) ?= − πwt

(wt + 1)!

I can also give a motivic proof of this identity, although like Symmetric Insertion, it is only
up to a rational constant. This naturally leads to a much larger family of identities resembling
symmetric insertion above

Theorem 2.5.
2n∑
j=0

∑
permutations of ai

(−1)jζ(2a0 , 3, . . . , 2a2n−j , 3, 2c, {1, 2}, 2a2n−j+1 , . . . , {1, 2}, 2a2n) ∈ πwtQ
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Numerical evaluation, and searching for identities using integer relation algorithms suggests
that this is just a symmetrised version of a more precise identity, as cyclic insertion is to symmetric
insertion.

Conjecture 2.6.

2n∑
j=0

(−1)jζ(2aj , 3, . . . , 2a2n−1 , 3, 2a2n , {1, 2}, 2a0 , . . . , {1, 2}, 2aj−1) ?= (−1)n πwt

(wt + 1)!

These examples, along with some others found from the coproduct on motivic MZVs, such as

2ζ(1, 3, 3, 3) + 2ζ(3, 3, 1, 3)− ζ(3, 1, 3, 1, 2) ∈ π10Q ,

serve as a jumping off point form which to investigate and formulate a generalised cyclic insertion
conjecture.

Conjecture 2.7 (Generalised cyclic insertion). Let B be the set of MZVs whose arguments, and
their duals, consist entirely of 1s, 2s and 3s. Define the operator X on these MZVs as follows:

ζ(2a, 1, 2b, 3, w) 7→ ζ(w, 1, 2a, 3, 2b)
ζ(2a, 3, w) 7→ −ζ(w, 1, 2, 2a)
ζ(2a0 , 1, 2, 2a1 , . . . , 1, 2, 2ak , 1, 2ak+1 , 3, w) 7→ (−1)kζ(w, 1, 2a0 , 3, 2a1 , 3, . . . , 3, 2ak+1) .

Let z ∈ B be such an MZV, and apply the operator X continually to find the orbit OX(z).
Then ∑

OX(z) ?= sgn((−1)(#3(z)−#3(dual(z)))/2) |OX(z)|
#3(dual(z)) + #3(z) + 1

πwt

(wt + 1)! ,

where one should view sgn(±i) := 0. (Here dual refers to MZV corresponding to z by dualiy [2,
Theorem 4.1].)

An explicit proof of this unfortunately remains elusive, particularly since it generalises
two already conjectural results. Thus I am currently investigating motivic proofs of various
symmetrisations of the generated identities, something I have already had success with in previous
cases above.

I can show generally that some sufficiently symmetrised (though not trivially so) version of
the identity indeed holds at even weight. Some particular examples, other than those above, are
as follows:

ζ(2n, 1, 3, 3, 1, 2) + ζ(3, 1, 2, 1, 2n, 3)− ζ(1, 2, 1, 2n, 3, 1, 2)+

+ ζ(1, 2, 1, 3, 3, 2n)− ζ(3, 2n, 1, 3, 3) ∈ π2n+10

(2n+ 11)!Q ,

which gives one of the cyclic insertion identities on the nose, in this case. And∑
compositions ai = M

ζX({1, 3}N , 3, 3 | a0, . . . , a2N+2) ∈ πwtQ ,

which can be seen as an analogue for the Bowman-Bradley result which holds for ζ({1, 3}m).
(Here I use the notation ζX(w | {ai}) to mean the cyclic insertion identity generated by

inserting ai in the i-th gap of the argument string w.)
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3 Identities and relations between weight ≥ 5 MPLs
The weight 4 case has been studied in detail by Gangl, who is assembling a compendium of
functional equations and symmetries satisfies by the various weight 4 MPLs [9](or more precisely
their corresponding iterated integrals, for simplicity). I am in undertaking a similar analysis of
the weight 5 case, with forays into higher weight cases if possible.

Initially a good choice of arguments to analyse consists of cross ratios. Products of cross ratios
can enter in the more complicated cases. After computing the symbol, one work at various levels
of refinement to produce successively more precise identities. Firstly work modulo δ which kills
products and Lin terms giving the top ‘slice’ of an identity. One identity that I find initially is

I4,1(x, y) + I4,1( 1
x ,

1
y ) ≡δ 0 .

Make this more precise by finding the Li5 terms. To do this, compute the symbol modulo �,
which kills only products, and allows Lin terms to survive. I find

I4,1(x, y) + I4,1( 1
x ,

1
y ) ≡� −Li5(x)− 4 Li5(xy ) + Li5(y) .

Lastly on the symbol level, one can search for the missing product terms to build up the exact
identity. For example:

I4,1(x, y) + I4,1( 1
x ,

1
y )

+ (Li5(x) + 4 Li5(xy )− log(xy ) Li4(xy ))

+
4∑
i=0

1
i! (− log(x))i Li5−i(y)− 1

5! (log5(xy )− log5(x)) ≡S 0

By itself this is not enough to give a completely correct numerically testable identity since the
symbol does not detect contributions of the form constant× lower weight. These terms can be
investigated using the coproduct ∆ on MPLs, to build up a successive slices of the numerically
testable identity:

I4,1(x, y) + I4,1( 1
x ,

1
y )

+ (Li5(x) + 4 Li5(xy )− log(xy ) Li4(xy ))
1
5! (− log5(xy ) + log5(x)) + L̃i5(x, y)

+ iπ(− 1
4! log4(x) + L̃i4(x, y))

+ −2π2

6 ( 1
3! (log3(xy ) + log3(x)) + L̃i3(x, y))

+ −2π4

90 ( 1
1! (3 log(xy ) + log(x)) + L̃i1(x, y)) = 0 .

Theorem 3.1. A similar symbol level identity holds for all iterated integrals Ia,b(x, y), including
a precise description of the product terms and Lin terms. A similar candidate numerically testable
identity can be given for In,1(x, y).

The above identity is just one example arising from cross ratio arguments. I am in the
process of assembling a compendium of similar identities for all of the weight 5+ iterated integrals
ranging from the depth 2 integrals I4,1, I3,2, I2,3 and I1,4 through to the most generic integral the
quintuple-logarithm I1,1,1,1,1.
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Part of this also includes investigating relations between different iterated integrals. For
example, I have found expression for all weight 5 depth 3 integrals purely in terms of I3,2 and
I3,1,1. Combining this with Dan’s reduction method [7] gives an expression for any weight 5 MPL
purely in terms of I5, I3,2 and I3,1,1, showing these three functions suffice.

Theorem 3.2. Any weight 5 MPL can be expressed in terms of I5, I3,2 and I3,1,1 (and products
of lower weight).

It is expected that the index 1 can always be eliminated from an MPL, so one should be able
to find an expression in terms of I5 and I3,2 only. This result reduces the question to tackling
one specific case at weight 5: finding I3,1,1 in terms of I3,2, which is potentially a more tractable
problem.

As another line of exploration, Goncharov gives a schematic plan of how to derive a functional
equation for Li5 from expressions for particular elements in terms of Li5. [11] Goncharov gave a
similar schematic plan for Li4, and the resulting functional equation has been found by Gangl,
after expressing Goncharov’s element in terms of Li4 of products of up to 8 cross ratios. I intend
to make a similar attempt on the Li5 case .
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