
Quadratic forms, theta series, η-products
and Ramanujan-τ congruences

Steven Charlton

I am interested in studying which primes are represented by certain quadratic forms. In particu-
lar, giving conditions for those forms which cannot be handled by class field theory (as in [Cox89]).
For class number h(D) ≤ 4 or h(D) = 6, class field theory is sufficient to completely characterise
the primes represented by any class of quadratic forms. How can we go beyond this?

1. Polynomial congruences are insufficient

I try to indicate what I mean by this. Recall there is an isomorphism from the form class group C(D)

of discriminant D to the (narrow) ideal class group C(O) of the order O = Z[
√
D] ⊂ OK , where

K = Q(
√
D). Using the ring class field KO to study when the prime (p)Z of Z splits into principal

ideals in O = Z[
√
D], we always obtain a condition of the following form: for p | disc 2DfD(t)

p = x2 + ny2 ⇐⇒

{
(−D/p) = 1, and

fD(t) ≡ 0 (mod p) has a root,

Here fD(t) the polynomial of degree h(D), which defines the ring class field KO of the order

O = Z[
√
D] as an extension of K. (The polynomial fD(t) can be taken to have Z-cooefficients.)

Since Gal(KO/K) ∼= C(O), intermediate fields of the ring class field KO/K correspond to
subgroups G ⊂ C(O) of the (narrow) ideal class group. We can use these intermediate fields to
detect when a prime (p)Z splits into ideals which lie in this subgroup. Equivalently, this detects
when a prime p can be represented by some quadratic form lying in a corresponding subgroup
G′ < C(D) ∼= C(O).

For class number h(D) ≤ 4, and h(D) = 6, one can exploit the structure of the form class group,
and the fact that the Gauss-composition-inverse quadratic forms Q(x, y) = ax2 + bxy + cy2 and
Q−1(x, y) = ax2 − bxy + cy2 obviously represent the same primes. Since forms which represent
the same primes are GL2(Z)-equivalent, one can use inclusion-exclusion to give explicit criteria
describing the primes represented by any of the forms of discriminant D.

For example, consider class number h(D) = 6, where necessarily C(D) ∼= Z/6Z = 〈Q|Q6 = 1〉.
We can consider the following subgroups G1 = {e}, G2 = {e,Q3}, G3 = {e,Q2, Q4} and G6 =
Z/6Z. Then

{e} = G1

{Q3} = G2 \G1

{Q2, Q4} = G3 \G1

{Q5, Q1} = G6 \ (G1 ∪G3 ∪G2)

Whence one obtains the criterion, for p not dividing 2D times the discriminants of the polynomials
fi(t).

p = e(x, y) ⇐⇒

{
(−D/p) = 1, and

f1(t) ≡ 0 (mod p) has a root.

p = Q3(x, y) ⇐⇒


(−D/p) = 1, and

f2(t) ≡ 0 (mod p) has a root, and

f1(t) ≡ 0 (mod p) no roots.
1
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p = Q2(x, y) ⇐⇒


(−D/p) = 1, and

f3(t) ≡ 0 (mod p) has a root, and

f1(t) ≡ 0 (mod p) no roots.

p = Q2(x, y) ⇐⇒


(−D/p) = 1, and

f3(t) ≡ 0 (mod p) no roots, and

f2(t) ≡ 0 (mod p) no roots, and

f1(t) ≡ 0 (mod p) no roots.

Here fi(t) is the polynomial defining the intermediate fixed field K ⊂ KGi

O ⊂ KO of the ring class
field KO/K, the one which corresponds to the subgroup Gi of the ideal/form class group C(D).

This inclusion-exclusion principle works to give criteria for all forms, if and only if every element
of the class group has order 1, 2, 3, 4 or 6. If there is an element of order 5, or order ≥ 7, then
we cannot distinguish the φ(5) = 4 or φ(≥ 7) ≥ 4 primitive generators – and these forms do not
represent the same primes.

The first time where we run into difficulties it at class number h(D) = 5, where (as indi-
cated above) we cannot distinguish the forms Q,Q2, Q3 and Q4 using subgroups of the class
group/intermediate fields of the ring class field. Therefore, we cannot apply our strategy from
above to obtain a ‘boolean system’ of polynomial congruences characterises the primes represented
by Q. But by itself this does not mean that such a system does not exist, only we do not have the
necessary techniques to find it.

To focus on a a concrete case, take D = −47 where we have the following representatives of the
5 classes of binary quadratic forms

x2 + xy + 12y2︸ ︷︷ ︸
e(x,y)

, 2x2 + xy + 6y2︸ ︷︷ ︸
Q(x,y)

, 3x2 − xy + 4y2︸ ︷︷ ︸
Q2(x,y)

,

3x2 + xy + 4y2︸ ︷︷ ︸
Q3(x,y)

, 2x2 − xy + 6y2︸ ︷︷ ︸
Q4(x,y)

Question 1. The quadratic form Q(x, y) = 2x2 + xy + 6y2 represents the following list of primes

p = 2, 7, 53, 59, 61, 89, 97, 131, 157, 173, 263, 283, 331, 337, 353, 379, 431, 479, 491, . . .

Are these primes characterised by a boolean system of polynomial congruences? How does one
find this system, or prove that it does cannot exist?

Musing 2. If one could prove that the polynomials in such a system had to define intermediate
fields of the ring class field, one could say that such a system does not exist since the degree 5
Abelian extension KZ[ 1+

√
−47

2 ]
/Q(
√
−47) has no intermediate fields. But currently, I see no reason

why such polynomials would have to have a connection to class fields of any sort.

2. Quadratic forms of discriminant −47

Assuming, then, that no polynomials are sufficient to characterise those primes, we are compelled
to ask how they can be characterised (in some explicit, non-tautological way!). For this we can
consider the Θ-series of the quadratic forms, and use results from the theory of modular forms.

I focus first on the specific case D = −47, then ask about generalities. From the 5 quadratic
forms above, we obtain only the following 3 distinct Θ-series

Θ0 = Θx2+xy+12y2(z) = 1 + 2q + 2q4 + 2q9 + 4q12 + · · ·
Θ1 = Θ2x2+xy+6y2(z) = 1 + 2q2 + 2q6 + 2q7 + 2q8 + 2q9 + 2q12 + · · ·
Θ2 = Θ3x2+xy+4y2(z) = 1 + 2q3 + 2q4 + 2q6 + 2q8 + 2q12 + · · ·

By the ‘standard’ theory, these Θ-series are modular forms forms of weight 1, for Γ0(|D|) = Γ0(47),
with character ε−47 = (−47/ · ). One obvious modular form in this space (actually in the subspace
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of cusp forms) is the η-product

η(z)η(47z) = q2
∞∏
n=1

(1− qn)(1− q47n) .

It turns out that
1

2
(Θ1 −Θ2) = η(z)η(47z) =:

∞∑
n=1

anq
n ,

and this difference of Θ-series already holds enough information for us to write down precise, explicit
criterion for the 5 forms. Writing an for the coefficient of qn in the q-expansion of η(z)η(47z), we
obtain the following

p = x2 + xy + 12y2 ⇐⇒

{
(−47/p) = 1, and

ap = 0

p = 2x2 ± xy + 6y2 ⇐⇒

{
(−47/p) = 1, and

ap = 1

p = 3x2 ± xy + 4y2 ⇐⇒

{
(−47/p) = 1, and

ap = −1

This gives us criteria in terms of the coefficient of ‘known’ modular forms. In fact we can make
this somewhat more explicit in the following way. Notice that modulo 47 (prime), we have

η(z)η(47z) = q2
∞∏
n=1

(1− qn)(1− q47n)

≡ q2
∞∏
n=1

(1− qn)(1− qn)47

= ∆(z)2 (mod 47)

In particular an ≡
∑
i+j=n τ(i)τ(j) (mod 47), where τ is the Ramanujan-τ functon, the coefficient

of qn in the q-expansion of ∆(z). So we can replace the ap criteria above with explicit criteria
involving a congruence on a convolution of the Ramanujan-τ function.

p = x2 + xy + 12y2 ⇐⇒

{
(−47/p) = 1, and∑
i+j=p τ(i)τ(j) ≡ 0 (mod 47)

p = 2x2 ± xy + 6y2 ⇐⇒

{
(−47/p) = 1, and∑
i+j=p τ(i)τ(j) ≡ 1 (mod 47)

p = 3x2 ± xy + 4y2 ⇐⇒

{
(−47/p) = 1, and∑
i+j=p τ(i)τ(j) ≡ −1 (mod 47)

Alternatively, one can read this as a congruence for a Ramanujan-τ convolution.

Theorem 1. For any prime p, the convolution-square of the Ramanujan-τ function satisfies the
following congruences modulo 47

∑
i+j=p

τ(i)τ(j) ≡



0 if (−47/p) = −1

0 if (−47/p) = 0

0 if (−47/p) = 1 and p = x2 ± xy + 12y2

1 if (−47/p) = 1 and p = 2x2 ± xy + 6y2

−1 if (−47/p) = 1 and p = 3x2 ± xy + 4y2

(mod 47)

It appears that for any other prime modulus r, the set{∑
i+j=p

τ(i)τ(j) (mod r)

∣∣∣∣ p prime

}
exhausts all residue classes in Z/rZ.
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This is reminiscent of Wilton’s congruence [Wil30] for τ(p) modulo 23, which is obtained by
considering quadratic forms of discriminant −23. Swinnerton-Deyer also observes the further
congruence that

τ(p) ≡ σ11(p) (mod 232)

if p = x2 + 23y2. Serre [Ser67] provides a proof/interpretation of this, though I do not yet fully
understand the details of this proof.

Conjecture 2. It appears that one has an analogue of this modulo 47, namely for p 6= 47:

p = x2 + 47y2 =⇒
∑

i+j=p
τ(i)τ(j) ≡ 0 (mod 472) ,

but it is not yet clear to me what the congruence is modulo 473.

Question 3. Is there any literature about the above theorem? Does the conjectural refinement
that for p 6= 47:

p = x2 + 47y2 =⇒
∑

i+j=p
τ(i)τ(j) ≡ 0 (mod 472) ,

hold? If so what does the congruence modulo 473 look like?

The standard theory tells us that

Θ0 + 2Θ1 + 2Θ2 =
5

2
+

∞∑
n=1

(∑
d|n

(
−47

d

))
qn

(arising from the trivial character of Z/5Z) is an Eisenstein series. We also have that

S1 = Θ0 + (ζ5 + ζ45 )Θ1 + (ζ25 + ζ35 )Θ2 = Θ0 + −1+
√
5

2 Θ1 + −1−
√
5

2 Θ2

S2 = Θ0 + (ζ25 + ζ35 )Θ1 + (ζ5 + ζ45 )Θ2 = Θ0 + −1−
√
5

2 Θ1 + −1+
√
5

2 Θ2

(arising from the non-trivial characters of Z/5Z) are Hecke eigenforms for S1(Γ0(47), ε−47).
We already know one basis element of S1(Γ0(47), ε−47), in terms of η-products (or other ‘familiar’

modular forms). This space is 2 dimensional, so we only need to find a second basis vector. The
method from [Kil08] seems to apply, to say every modular form for S1(Γ0(47), ε−47) is a rational
function in Dedekind η’s. Namely, if we consider

fi(z) :=
Si(η(z)η(47z))11

∆(z)
,

this is modular of weight 0, for Γ0(47), with no character. Therefore by [Mil17] Theorem 6.1, one
can say that fi is a rational function of j(z), j(47z), for the Klein j-invariant. This can then be
expressed in terms of η since the Eisenstein series E4 and E6 have known expressions in terms of
η. Unfortunately, it seems rather difficult to do this explicitly, particularly since we are looking
for a rational function in η, and not just a sum of η-quotients.

Question 4. How can one find an explicit expression for the second basis element of S1(Γ0(47), ε−47)
as a rational function of η? Are there any computational techniques that make this easier to ap-
proach.

Alternatively, are these other ‘familiar’ modular forms which can serve as this second basis
vector? (Ideally, I want to find, in principal, an expression for the coefficients of the 3 Θ-series
above. So I want to relate the Θ-series to some other modular form, which has a more explicit/well-
known Fourier coefficient.)

3. Quadratic forms of discriminant −79

The next time that class number h(D) = 5 occurs, is for D = −79. Unfortunately, the same
analysis as for D = −47 now runs into difficulties much earlier. Since 1 + |D| = 80 is not divisible
by 24, the η-product η(z)η(79z) is not a modular form for S1(Γ0(79), ε−79), so we can’t even run
the method indicated above, so how to find an explicit basis for S1(Γ0(79), ε−79).

Question 5. Can one find a basis for S1(Γ0(79), ε−79) in terms of rational functions of η? Alter-
natively, can any other ‘familiar’ modular forms provide such a basis?
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4. Quadratic forms of discriminant −71

We can play the same game as above to obtain some results for discriminant −71, where h(−71) =
7. We have the following 7 classes of quadratic forms

x2 + xy + 18y2︸ ︷︷ ︸
e(x,y)

, 2x2 + xy + 9y2︸ ︷︷ ︸
Q(x,y)

, 4x2 − 3xy + 5y2︸ ︷︷ ︸
Q2(x,y)

, 3x2 + xy + 6y2︸ ︷︷ ︸
Q3(x,y)

,

3x2 − xy + 6y2︸ ︷︷ ︸
Q4(x,y)

, 4x2 + 3xy + 5y2︸ ︷︷ ︸
Q5(x,y)

, 2x2 − xy + 9y2︸ ︷︷ ︸
Q6(x,y)

The associated Θ-series are

Θ0 = 1 + 2q + 2q4 + 2q9 + · · ·
Θ1 = 1 + 2q2 + 2q8 + 2q9 + 2q10 + 2q12 + · · ·
Θ2 = 1 + 2q4 + 2q5 + 2q6 + 2q12 + · · ·
Θ3 = 1 + 2q3 + 2q6 + 2q8 + 2q10 + 2q12 + · · ·

We have
1

2
(Θ3 −Θ2) = η(z)η(71z) .

We can distinguish Q2(x, y) and Q3(x, y) from the remaining forms e(x, y) and Q1(x, y) using the
coefficient bp of the q-expansion of the modular form η(z)η(71z). We can then distinguish e(x, y)
and Q1(x, y) using the Hilbert class field condition. So we obtain the following criterion

p = x2 + xy + 18y2 ⇐⇒

{
(−71/p) = 1, and

t7 − t6 + 2t5 − 2t4 + t3 + 2t2 − 3t+ 1 ≡ 0 (mod p) has root

p = 2x2 ± xy + 9y2 ⇐⇒


(−71/p) = 1, and

bp = 0, and

t7 − t6 + 2t5 − 2t4 + t3 + 2t2 − 3t+ 1 ≡ 0 (mod p) no root

p = 4x2 ± 3xy + 5y2 ⇐⇒

{
(−71/p) = 1, and

bp = −1

p = 3x2 ± xy + 6y2 ⇐⇒

{
(−71/p) = 1, and

bp = 1

Considering η(z)η(71z) modulo 71 leads to the result that η(z)η(71z) ≡ ∆3(z) (mod 71), and
so

bn ≡
∑

i+j+k=n

τ(i)τ(j)τ(k) (mod 71) .

We can replace bp = −1, 0, 1 with the corresponding congruence to obtain an explicit condition on
when p is represented by the corresponding quadratic forms, by using the Ramanujan-τ function.
Alternatively, we obtain a congruence on the triple-convolution of Ramanujan-τ .

Theorem 3. For any prime p, the convolution-cube of the Ramanujan-τ function satisfies the
following congruence modulo 71.

∑
i+j+k=p

τ(i)τ(j)τ(k) ≡



0 if (−71/p) = −1

0 if (−71/p) = 0

0 if (−71/p) = 1 and p = x2 + xy + 18y2

0 if (−71/p) = 1 and p = 2x2 ± xy + 9y2

1 if (−71/p) = 1 and p = 4x2 ± 3xy + 5y2

−1 if (−71/p) = 1 and p = 3x2 ± xy + 6y2

(mod 71)

Conjecture 4. It appears that we also have the refinement that for p 6= 71:

p = x2 + 71y2 =⇒
∑

i+j+k=p
τ(i)τ(j)τ(k) ≡ 0 (mod 712) .
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Though again, the form of the congruence modulo 713 is not clear.

5. Quadratic forms of discriminant −95

We can play the same game as above to obtain some results for discriminant −95, where h(−95) =
8. Unfortunately 95 is not prime, so we do not obtain directly any congruence for the 4-fold
convolution τ∗4(n).

The class group is C(−95) ∼= Z/8Z, We have the following 8 quadratic forms

x2 + xy + 24y2︸ ︷︷ ︸
e(x,y)

, 2x2 + xy + 12y2︸ ︷︷ ︸
Q(x,y)

, 4x2 + xy + 6y2︸ ︷︷ ︸
Q2(x,y)

, 3x2 − xy + 8y2︸ ︷︷ ︸
Q3(x,y)

,

5x2 + 5xy + 6y2︸ ︷︷ ︸
Q4(x,y)

, 3x2 + xy + 8y2︸ ︷︷ ︸
Q5(x,y)

, 4x2 − xy + 6y2︸ ︷︷ ︸
Q6(x,y)

, 2x2 − xy + 12y2︸ ︷︷ ︸
Q7(x,y)

.

They split into the following genera, with the indicated congruence conditions

G1 = {Q0 = x2 + xy + 24y2, Q2,6 = 4x2 ± xy + 6y2, Q4 = 5x2 + 5xy + 6y2}
represents↔ {1, 4, 6, 9, 11, 16, 24, 26, 36, 39, 44, 49, 54, 61, 64, 66, 74, 81} ⊂ (Z/95Z)∗

G2 = {Q1 = 2x2 ± xy + 12y2, 3x2 ± xy + 8y2}
represents↔ {2, 3, 8, 12, 13, 18, 22, 27, 32, 33, 37, 48, 52, 53, 67, 72, 78, 88} ⊂ (Z/95Z)∗

These 8 quadratic forms give rise to 5 distinct theta series, namely

Θ0 = 1 + 2q + 2q4 + 2q9 + · · ·
Θ1 = 1 + 2q2 + 2q8 + 2q12 + · · ·
Θ2 = 1 + 2q4 + 2q6 + 2q9 + 2q11 + · · ·
Θ3 = 1 + 2q3 + 2q8 + 2q10 + 4q12 + · · ·
Θ4 = 1 + 2q5 + 4q6 + · · · ,

modular for Γ0(95) with character ε−95. It turns out that we have

1

2
(Θ0 −Θ2) = η(5z)η(19z)

1

2
(Θ2 −Θ4) = η(z)η(95z)

We can therefore distinguish all forms in the principal genus. Unfortunately, since none of these
η-products involve Θ-series of quadratic forms from the other genera, we cannot distinguish these
forms.

Moreover, if we consider these modular forms, modulo 5, 19 or 95, we do not obtain any
particular pleasant congruences for Ramanujan-τ . All we obtain is that

η(5z)η(19z) ≡ η(z)5η(19z) (mod 5)

η(5z)η(19z) ≡ η(5z)η(z)19 (mod 19)

η(z)η(95z) ≡ η(z)η(19z)5 mod 5

η(z)η(95z) ≡ η(z)η(5z)19 mod 19

To obtain an interesting congruence, we would want to say that (1 − z95n) ≡ (1 − zn)95, modulo
something. But unfortunately the binomial coefficients involved are coprime, so no such congruence
follows from this method.

Question 6. Are there any interesting congruences on the convolution τ∗4(n), modulo 95, or some
other modulus? What techniques can be used to find/prove them given the above fails? Or can
the above congruences be used to obtain identities/results for other functions in this case?

Question 7. It appears that the η-products correspond to linear combinations of Θ-series from
the principal genus. Is this always the case? How to characterise the primes represented by the
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forms in the non-principal genera? Can it be done in a simple way with ‘familiar’ modular forms,
or does one have to resort to rational functions in η to obtain explicit identities?

6. Quadratic forms of discriminant 1− 24N

It seems already well-known that the class number of h(1 − 24N) is ‘relatively’ large (in vague
terms). We have h(−23) = 3, h(−47) = 5, h(−71) = 7, h(−95) = 8, h(−119) = h(−143) =
10, h(−167) = 11, and so on. (This is not increasing, as h(−263) = 13 is less than the previous
term h(−239) = 15.)

We should focus on discriminant D = 1−24N , such that |D| is prime. (This still does not make
h(1− 24n) increasing, as the previous counterexample still holds.) In these cases we can obtain a
congruence on the convolution τ∗N (n) modulo 24N − 1, at least if we can relate η(z)η(Nz) to the
theta series of quadratic forms of discriminant D = 1− 24N .

Conjecture 5. If N > 1 is such that 24N − 1 is prime, we have

η(z)η(Nz) =
1

2
(Θi −Θj)

for some Θ-series Θi = ΘQi
and Θj = ΘQj

. Thus we obtain the congruence

∑
a1+···+aN

τ(a1) · · · τ(aN ) ≡


1 if p = Qi(x, y)

−1 if p = Qj(, y)

0 otherwise

(mod 24N − 1) .

Moreover, we have the refinement that for p 6= 24N − 1:

p = x2 + (24N − 1)y2 =⇒
∑

a1+···+aN=p

τ(a1) · · · τ(aN ) ≡ 0 (mod (24N − 1)2) .

Question 8. Can η(z)η(Nz) always be written as a combination of Θ-series? It is always a
combination of 2 Θ-series, and if so which ones?
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