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1. Splitting of p in cubic number fields

Let K be a cubic number field, with class number hK = 3. Then the class group C(K) is
isomorphic to Z3, where 0 corresponds to the principal ideal class, and 1 and 2 correspond to
different non-principal ideal classes. Consider how a prime p in Z can split in K. Excluding the
finite number of primes which ramify, the following are the only possibilities

i) pOK is inert, with f(pOK | p) = 3,
ii) pOK = p1q1 with f(p1 | p) = 1 and f(q1 | p) = 2, or
iii) pOK = p1p2p3 with f(pi | p) = 1, so pOK splits completely.

Notice that case ii) above can only occur if the field K/Q is non-Galois since the two primes
have different inertial degrees.

Regardless of how the prime (p) splits in K, the factorisation must produce a consistent
equation in the class group of K. Case i) is trivial in this regard, because the ideal pOk is
principal, and there is actually no equation to satisfy. Case ii) is almost as trivial; since pOk is
principal, we get [p1] = [q1]−1 in C(K). Case iii) is more interesting since the following equations
hold in the class group

0 = 0 + 0 + 0

= 1 + 1 + 1

= 2 + 2 + 2

= 0 + 1 + 2 .

A priori nothing seems to prevent any of the four cases occurring when the prime p splits
completely, but curiously the last case appears not to occur in certain number fields.

Definition 1.1 (Homogeneous splitting). Let K be a cubic number field, with class number
hK = 3. Let p ∈ Z be a prime which does not ramify in K. I shall say K has homogeneous
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splitting if complete splitting pOK = p1p2p3 implies [p1] = [p2] = [p3] in C(K). Otherwise K has
non-homogeneous splitting.

This write-up stems from the initial curious observation that Q( 3
√

7) appears to have homo-
geneous splitting. This observation appeared whilst investigating the representation of primes
by ternary cubic forms, and relating this to the ideal classes in a cubic number field in analogy
with the quadratic case. This homogeneous splitting was noted in connection with the splitting
of the defining polynomial of the Hilbert class field of Q( 3

√
7), specifically the apparent lack of

splitting into factors of degree (1, 1, 1, 3, 3) modulo p.

Once the splitting field of the Hilbert class field of Q( 3
√

7) is known, homogeneous splitting
can be proven easily. There is a condition on the degree of this splitting field which implies ho-
mogeneous splitting, and conversely if this condition fails, I can prove non-homogeneous splitting
must occur using the Chebotarev density theorem.

2. Hilbert class field of K, and its splitting field

For a field K as above, consider the Hilbert class field H. We know that hK = 3, and
Gal(H/K) ∼= C(K) which means H/K has degree 3 and H/Q has degree 9.

If K/Q is Galois, then a standard argument shows that H/Q is also Galois. H is the maximal
unramified Abelian extension of K, and any conjugate of H/Q is also an unramified Abelian
extension of K. Therefore any conjugate of H/Q is contained in H, and for degree reasons is in
fact equal. This means H/Q is equal to all its conjugates, and so is Galois.

If K/Q is non-Galois, then H/Q cannot be Galois. If H/Q were Galois, then G := Gal(H/Q) ∼=
Z3 × Z3 or ∼= Z9 by the classification of groups of order p2. So K/Q would correspond to a
subgroup of G = Gal(H/Q) of index 3. Such a subgroup would necessarily be normal, since G is
Abelian. But normal subgroups of the Galois group correspond to Galois extensions of the base
field, which means K/Q would be Galois.

Consider now the splitting field S of the Hilbert class field H/Q, which fits into the following
field diagram.

Q

K

H

S

3

hK = 3

Proposition 2.1. The degree of the splitting field S/H is either 1, 2, 6 or 18. This corresponds
to degrees 9, 18, 54 or 162 as an extension of Q.

Proof. The degree of S/H is 1 if and only if H/Q is Galois, which is if and only if K/Q itself
is Galois. We can therefore assume that K/Q, and H/Q are non-Galois, and show one of the
remaining cases holds.

The splitting field of K/Q has degree 2 over K and degree 6 over Q. This is a standard result,
namely let f(x) is the defining polynomial of K, with roots α1, α2, α3. Then K is obtained
by attaching α1, but since K is not Galois, α2, α3 6∈ K. Dividing out f(x)/(x − α1) gives an

irreducible quadratic polynomial over K which has roots α2, α3. Attaching α2 to K gives K̃ a

degree 2 extension of K, a degree 6 extension of Q. And then already α3 ∈ K̃, since α2α3, α2 ∈ K̃.

So f(x) splits completely in K̃, and this is the splitting field of K.
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Consider the extension H/K, and find some α1 ∈ H \ K. Since H/K is Galois, we get

conjugates α2 := ασ1 , α3 := ασ
2

1 in H, where Gal(H/K) ∼= Z3 is generated by σ.
Let h(x) be the defining polynomial for H/Q, with roots α1, . . . , α9. Since H/K is Galois,

each conjugate H ′/K ′ will also be Galois, where K ′ is one of the conjugates of K/Q. This
means there are 3 conjugates H,H ′, H ′′, over K,K ′,K ′′ respectively, and we can therefore group
the roots such that α1,2,3 ∈ H, α4,5,6 ∈ H ′ and α7,8,9 ∈ H ′′. Consider the polynomial g(x) =
(x−α1)(x−α2)(x−α3). Since the α1,2,3 are conjugates over K, this polynomial is in K[x], and
is irreducible here since α1 6∈ K. Therefore g(x) is the minimal polynomial for α1 over K.

Since h(x) is a polynomial over K (in fact Q) with root α1, and g(x) is the minimal polynomial
for α1 over K, the standard argument using the division algorithm shows g | h in K[x]. If g′(x)
is the minimal polynomial for α4 over K ′, and g′′(x) for α7 over K ′′, we have g′ | h in K ′[x] and
g′′ | h in K ′′[x] by exactly the same argument.

Consider now the splitting field K̃ of K. The splitting field of H/Q, whatever it is, must

contain K̃, so let’s start here. Furthermore, K̃ contains K,K ′,K ′′. So in K̃[x] the polynomial
h(x) of H/Q splits into three cubic factors as h(x) = g(x)g′(x)g′′(x).

We obtain the splitting field of H/Q by making the factors g(x), g′(x) and g′′(x) split com-
pletely. And since H/K, H ′/K ′, H ′′/K ′′ are Galois, attaching one root of g, g′, g′′ makes that

factor split completely. We must attach first the root α1 of g(x) to K̃ get a field F1 := K̃(α1)
containing H, wherein g(x) has split completely. Then F1/Q has degree 6 × 3 = 18. If this is
not the splitting field, one of g′, g′′ has no split. Say, by reordering the roots, it is g′. Attach

α4 to F1 to get F2 := K̃(α1, α4). Then F2/Q has degree 18 × 3 = 54. If this is still not the

splitting field g′′ has not split, so attach α7 to F2 to get F3 := K̃(α1, α4, α7). Then F3/Q has
degree 54 × 3 = 162. At this point the polynomial f(x) definitely has split completely, so we
have found the splitting field.

If S is the splitting field of L/Q, then by the tower law [S : L][L : Q] = [S : Q], so that
[S : L] = [S : Q]/9. If S = F1, then [S : L] = 18/9 = 2. If S = F2, then [S : L] = 54/9 = 6.
Finally if S = F3, then [S : L] = 162/9 = 18. This proves the proposition. �

Remark 2.2. It appears generally that [S : L] = 2, or [S : L] = 6. If one were to study the
situation in the Proposition 2.1 in greater detail, one could presumably establish that once
g, g′ split, the factor g′′ must also split automatically. This would eliminate the case where
[S : L] = 18. But as yet, this would seem to take more effort than I am willing to make.

3. Splitting of p in the Hilbert class field H of K

Now we look at how the prime p can splits in K, and what impact this has on the splitting on
the Hilbert class field H. We shall analyse what happens with the factorisation in cases i) to iii),
and the subcases of these where the ideals in the factorisation fall into the various different ideal
classes in C(K). Using Dedekind’s theorem, we will relate these to the factorisation modulo p
of the polynomials fK(x) defining K/Q, and fH(x) defining the Hilbert class field H/Q. Recall
that the degrees of the irreducible factors of fK(x) modulo p are the inertial degrees of the prime
ideals above p in K.

p is inert in K: So pOK is prime, with f(pOK | p) = 3. Therefore fK(x) is irreducible modulo
p. The ideal pO is principal, so splits completely in the Hilbert class field as pOH = P1P2P3,
with f(Pi | pOH) = 1. Multiplicativity of f means f(Pi | p) = 3, so fH(x) factors with degrees
(3, 3, 3) modulo p.

pOK = p1q1 in K: We have f(p1 | p) = 1 and f(q1 | p) = 2, so modulo p fK(x) factors
with degrees (1, 2). Since [p1] = [q1]−1, either both ideals are principal, or both ideals are
non-principal.
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If p1 is principal, then it splits completely in H/K as p1OH = P1P2P3 with f(Pi | p1) = 1.
Since q1 is also principal, we get complete splitting in H/K as q1 = Q1Q2Q3 with f(Qi | q1) = 1.
Multiplicativity means f(Qi | p) = 2 and f(Pi | p) = 1. Therefore fH(x) factors with degrees
(1, 1, 1, 2, 2, 2) modulo p.

If p1 is non-principal, it does not split completely in H/K. But since H/K is Galois with
prime degree, the only other possibility is that p1 is inert. Therefore p1OH is prime in L, with
f(p1OH | p1) = 3. And q1OH , similarly, is prime in L with f(q1OH | q1) = 3. Multiplicativity
means f(p1O | p) = 3 and f(q1OH | p) = 6. Therefore fH(x) factors with degrees (3, 6) modulo
p.

pOK = p1p2p3 in K: So p splits completely in K. We have f(pi | p) = 1, so fK(x) factors
with degrees (1, 1, 1) modulo p. From the previous discussion there are four cases to consider,
where all pi are principal; all pi are non-principal of class 1; all pi are non-principal of class 2; or
the pi are of three different classes.

If all pi are principal, then each pi splits completely in H/K as piOH = Pi,1Pi,2Pi,3,
with f(Pi,j | pi) = 1. By multiplicativity f(Pi,j | p) = 1. So fH(x) factors with degrees
(1, 1, 1, 1, 1, 1, 1, 1, 1) modulo p.

If all pi are non-principal of either class – we can’t distinguish with H(!) – then each pi does
not split completely in H/K. Since H/K is Galois with prime degree, they therefore remain
inert. So piOH is prime in L with f(piOH | pi) = 3. By multiplicativity f(piOH | p) = 3. So
fH(x) factors with degrees (3, 3, 3) modulo p.

If the pi are of three different classes, then say p1 is principal, p2 is non-principal of class
1, and p3 is non-principal of class 2. From the above discussion we know p1 splits complete as
p1OH = P1P2P3 with f(Pi | p) = 1. But both p2 and p3 are inert in H, so p2OH and p3OH
are prime with f(p2OH | p) = 3 and f(p3OH | p) = 3. Therefore fH(x) factors with degrees
(1, 1, 1, 3, 3) modulo p.

This discussion can be summarised by the following table

In K Subcases fK degrees fH degrees
pOK prime pOK principal (3) (3,3,3)
pOK = p1q1 p1, q1 principal (1,2) (1,1,1,2,2,2)

p1, q1 non-principal (1,2) (3,6)
pOK = p1p2p3 pi all principal (1,1,1) (1,1,1,1,1,1,1,1,1)

pi all non-principal (1,1,1) (3,3,3)
pi all different classes (1,1,1) (1,1,1,3,3)

The upshot of this is that non-homogeneous splitting is detected uniquely by factorisation
of fH(x) modulo p having degrees (1, 1, 1, 3, 3). If this occurs, when we have non-homogeneous
splitting, and if it does not occur then we have homogeneous splitting.

The goal of the remaining sections will be to prove the following theorem

Theorem 3.1. Let K be a cubic number field with hK = 3, and let H/K its Hilbert class field.
Let S be the splitting field of H/Q, with d = [S : H]. Then K has homogeneous splitting if and
only if d ≤ 2.

4. [S : H] ≤ 2 implies homogeneous splitting

Suppose that [S : H] ≤ 2, and suppose some prime p splits in a non-homogeneous way in K.
So pOK = p1p2p3 with p1 principal, and p2, p3 non-principal, say. Then let P1 be a prime in
H above the principal prime p1. From the discussion previously, we know f(P1 | p) = 1. The
prime in H above p2 is pOH , since p2 is inert, and f(p2OH | p) = 3.
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Let R1 be a prime above P1 in S. It is not clear how P1 behaves in S/H, but regardless we
have f(R1 | P1) ≤ [S : K] ≤ 2. Let R2 be a prime above p2OH in S. Again it is not clear how
pOH behaves in S/H, but we do have f(R2 | p2OH) ≥ 1.

This information fits into the following field diagram.

Q ⊃ (p)

K with p1p2p3 = pOK

H with P1P2P3 = p1OH , and ⊃ p2OH

S with R1 above P1, and ⊃ R2 above p2OH

3

hK = 3

≤ 2

≤ 18

By multiplicativity we have f(R1 | p) ≤ 1× 2 = 2, and f(R2 | p) ≥ 3× 1 = 3. But this is not
possible in the Galois extension S/Q, every prime above p must have the same inertial degree.
This proves that the splitting of p in K must be homogeneous.

5. [S : H] > 2 implies non-homogeneous splitting

This direction is a little more delicate, at the moment. It relies on the classification of transitive
groups of degree 9, and the Chevotarev density theorem. With more work in Proposition 2.1,
one could presumably even determine the exact structure of the Galois group in the case where
[S : K] = 1, 2, or 6. But again this is more effort than I want to expend.

Recall the Chebotarev density theorem, phrased in terms of the splitting of a polynomial
modulo p goes as follows.

Theorem 5.1 (Chebotarev density theorem). Let f(x) ∈ Z[x] be a monic irreducible polynomial
with deg(f) = n. Let E = Q(α) where α is a root of f(x), and let F be the normal closure of E.
Let P = (n1, . . . , nr) be a partition of n. Let S be the set of unramified primes, and SP be the set
of unramified primes p for which f(x) factors modulo p into irreducibles of degree (n1, . . . , nr).
Let G = Gal(F/Q) be the Galois group of E, viewed as a subgroup of the symmetric group Σn.
And let GP be the set of elements of G with cycle type (n1, . . . , nr). Then the density δ(SP ) of
SP satisfies

lim
N→∞

# { p ∈ Sp | p ≤ N }
# { p ∈ S | p ≤ N }

=: δ(Sp) =
#GP
#G

.

In particular, if #GP > 0, then SP 6= ∅, and there exists some prime p for which f(x) factors
modulo p with degrees P = (n1, . . . , nr), and in fact infinitely many.

Recall from Proposition 2.1, if [S : H] > 2, then [S : H] = 6 or 18. Which then corresponds
to [S : Q] = 54 or 162. The Galois group of H/Q then corresponds to a transitive group of
degree 9 of order 54 or 162. (Here 9 corresponds to the degree of H/Q, and of the polynomial
fH(x). The order 54 or 162 is the degree of the splitting field S/Q.) When [S : H] ≤ 2, we get
[S : Q] = 9 or 18 giving transitive groups groups of degree 9 and order 9 or 18.

Butler and McKay [BM83] classify the transitive groups of degree up to 11 (and in particular
degree 9). Those groups relevant to us are summarised in the following table by limiting the
groups to those of degree 9 and order 54 or 162. Those of order 9 and 18 are also included for
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completeness to illustrate how homogeneous splitting in the previous section also follows from
Chebotarev (at least for all but finitely many primes).

Group G Name Order #G #G(1,1,1,3,3)

9T1 C(9) = 9 9 0
9T2 E(9) = 3� 3 9 0
9T3 D(9) = 9 : 2 18 0
9T4 S(3)� 3 18 0
9T5 S(3)[ 12 ]S(3) = 32 : 2 18 0
9T10 [32]S(3)6 54 6
9T11 E(9) : 6 = 1

2 [32 : 2]S(3) 54 6
9T12 [32]S(3) 54 6
9T13 E(9) : D6 = [32 : 2]3 = [ 12S(3)2]3 54 6
9T20 [33]S(3) = 3 o S(3) 162 12
9T21 1

2 [33 : 2]S(3) 162 12
9T22 [33 : 2]3 162 12

From this table we can see that groups of order 54 or 162 always have #G(1,1,1,3,3) > 0. From
Chebotarev, this means that there exist some prime p for which fH(x) factors modulo p into
degrees (1, 1, 1, 3, 3). By the analysis of the prime decomposition in K, and H from section 3,
this type of splitting occurs only for non-homogeneous splitting of p. Therefore if [S : H] > 2,
the field K has non-homogeneous splitting.

Remark 5.2. In all the cases I have explicitly calculated so far, the splitting field has degree
[S : H] = 1, 2 or 6. And the structure of the Galois group depends only on [S : H], as follows.

[S : H] Gal(H/Q) Name
1 9T2 E(9) = 3� 3
2 9T4 S(3)� 3
6 9T12 [32]S(3)

With more effort in Proposition 2.1, this could probably be proven explicitly.

Remark 5.3. One question really remains. Given a cubic number field K with hK = 3, how
can one determine whether [S : H] = 2 or 6 from the arithmetic of K itself?

6. Tighter bound on the degree of the splitting field S of H

In Proposition 2.1, we established that the degree of the splitting field S of the Hilbert class
field H of the pure cubic field K = Q( 3

√
n) of class number hK = 3 satisfies [S : H] = 1, 2, 6, 18.

Moreover we observed that in calculations the case [S : H] = 18 never occurs. We will give a
proof of this now, by appealing to certain facts about the class number of the normal closure of
Q( 3
√
n) .

Theorem 2 in [Rei05] establishes the following result about the class number hL of the normal
closure L = K = Q( 3

√
n, ζ3) of K in terms of the class number hK of K = Q( 3

√
n) itself.

Theorem 6.1 (Theorem 2 in [Rei05]). Consider the pure cubic field K = Q( 3
√
n). Then the

class number hL of the normal closure L = K = Q( 3
√
n, ζ3) of K is either h2K or 1

3h
2
K .

Recall also from class field theory that the Hilbert class field is ‘compatible’ with field exten-
sions in the following sense. If E ⊂ F is a field extension, then H(E) ⊂ H(F ), where H(E) is
the Hilbert class field of E. So if E is a non-Galois field over Q, with splitting field F , we get
that the splitting field of H(E) is contained in H(F ). This is because H(F ) is a Galois field over
Q, containing H(E), and the splitting field of H(E) is the smallest such field.

We can therefore assemble K,K and their Hilbert class fields into the following diagram.
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Q

K = Q( 3
√
n)

K = Q( 3
√
n, ζ3)

H(K)

S

H(K)

3

2

hk = 3

∴ ≤ 6

hK ≤ 9
≥ 1

We know that hK = 1
3h

2
K or h2K , both of which are ≤ 9. Therefore [H(K) : K] ≤ 18. And

[H(K) : S] ≥ 1, almost by definition. So using the tower law, we establish that

[S : H(K)] =
[H(K) : K]

[H(K) : S][H(K) : K]
≤ 18

1 · 3
= 6 .
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