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1. Introduction

In the book Primes of the form x2 +ny2, Cox [Cox11] discusses the history and theory behind
the answering to the question of which primes the binary quadratic form x2 + ny2 represents.
Using techniques and results from class field theory, specifically the Hilbert class field and ring
class fields, this question is completely answered when n > 0. A similar answer can be given
using the narrow (Hilbert) class field and narrow ring class fields when n < 0, although this is
not discussed in the book.

It appears less study has been made of the analogous question for cubic forms. In this writeup
I will give some idea of how the results from [Cox11] can be generalised to the case of ternary
cubic forms.

As an aside, I will first investigate how the narrow class number of a cubic field relates to the
number of totally positive fundamental units. After this we will see the correspondence between
ideal classes in a cubic number field, and ternary cubic forms.

Using this I will focus first on the cubic number field Q( 3
√

11), which has class number 2.
This will give rise to 2 ternary cubic forms, one corresponding to the principal ideal class (the
so-called norm form), and one corresponding to the non-principal ideal class. Using the Hilbert
class field I will determine exactly which primes each of these forms represents, including which
primes are represented simultaneously by both forms – a feature which does not occur in the
quadratic case.

2. Narrow class numbers of cubic fields

In the quadratic case, one has the result that h+K = hK if and only if the fundamental unit u

has norm −1. Otherwise h+K = 2hK , and in particular this always holds for imaginary quadratic
fields. What is the analogous result for cubic fields?
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First, let us give an equivalent characterisation in the quadratic case. Recall that N(α) =∏
i σi(α). In a real quadratic field, u exists. If −1 = N(u) = σ1(u)σ2(u), then σ1(u) and σ2(u)

have opposite signs. Otherwise 1 = N(u) = σ1(u)σ2(u), and so σ1(u) and σ2(u) have the same
sign. By using −u in place of u we can force σ1(u) = σ2(u) > 0, so u is totally positive. Let us
call a fundamental unit u totally positive if u or −u is totally positive; equivalently if σi(u) all
have the same sign. We this obtain that for a real quadratic field, h+K = hK if the fundamental

unit u is totally positive. If u is not totally positive, then h+K = 2hK .

For a cubic field we obtain the following.

Case sig(K) = (1, 2): Let u be the fundamental unit. Since there is only one real embedding
σ1, necessarily u is totally positive. Thus h+K = hk.

Case sig(K) = (3, 0): Let u1, u2 be the fundamental units. Consider the set S = { u1, u2, u1u2 },
and let S+ be those elements which are totally positive. If #S+ = 0, then h+K = hK . If #S+ = 1,

then h+K = 2hK . Otherwise #S+ = 3 and then h+K = 4hK .

These situations can all occur, as illustrated below.

Field Signature Fundamental units Real σi signs #S+ hk h+k [h+K : hK ]
2 + t3 (1,2) −1− θ + 1 1 1
1− 3t+ t3 (3,0) 2− θ − θ2 + +− 0 1 1 1

2− θ2 −+−
1− 4t+ t3 (3,0) −θ +−− 1 1 2 2

2− θ + + +
31− 37t+ t3 (3,0) −5 + 5θ + θ2 + + + 3 2 8 4

−10 + 13θ − 2θ2 −−−

Proof. Something of a proof here... �

3. Ternary cubic forms from cubic number fields

In the quadratic case, the correspondence between ideals and quadratic forms goes as follows.
Let a be an ideal in K = Q(

√
d), and let [α1, α2] be a Z-basis for a. One has that

det(σi(αj))
2 = N(a)2∆K ,

where σi are all the embeddings K → R or C. Call the basis normalised if det(σi(αj)) =
N(a)2

√
∆K , where

√
· is the principal branch of the square root function. If [α1, α2] is a nor-

malised basis for a, the map

Q : a 7→ 1

NK(a)
NK(α1x+ α2y)

gives a bijective correspondence between narrow ideal classes in Q(
√
d) and equivalence classes

of quadratic forms of discriminant 4d. Moreover, the quadratic form Q(a)(x, y) represents an
integer m if and only if there is an ideal of norm m in the narrow ideal class [a].

More precisely, it is if and only if there is an ideal of norm m in the narrow ideal class [a]−1.
But the forms arising from a and ã represent the same integers since Q(a)(x, y) = Q(ã)(x,−y)
and [a]−1 = [ã].

A similar map can be defined from the ideal class group of a cubic number field to ternary
cubic forms. Let a be an ideal of cubic number field K, and let [α, β, γ] be a normalised basis
for a. Then

C : a 7→ 1

NK(a)
NK(αx+ βy + γz)

associates an equivalence class of ternary cubic forms to the ideal class [a].
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Essentially the proof goes through as in the quadratic case. The change of basis of an ideal,
gives an action of SL(3,Z) on the cubic form converting it to an equivalent form. Ideals a and b
in the came class can be related to multiplication by principal ideal (λ). By changing to (−λ)
we can force N(λ) > 0, and go pick up normalised basis for b as a multiple of the normalised
basis for a. (If we go this for an even degree field, we must have some non-totally-positive unit
in order to be able to do this, so we will have to deal with the narrow class group.)

It still remains to check injectivity. The method for the quadratic case heavily relies on
computing roots of a single variable version of the form in order to produce a principal ideal
relating the two ideals. One might also want surjectivity, but this also is problematic.

But we do have a representation result. The cubic form C(a)(x, y, z) represents a positive
integer m if and only if there is an integral ideal of norm m in the ideal class [a]−1. Since
C(−x,−y,−z) = −C(x, y, z) an integer m is represented if and only if |m| is represented, so we
may restrict to positive integers without loss of generality.

Say b is an ideal of norm m in the class [a]−1. Then we have (λ) = ab ⊂ a for some λ. We
can assume N(λ) > 0 by multiplying by −1. We thus have λ ∈ a and can therefore be expressed
in terms of the basis [α1, α2, α3] of a. Also N(λ) = N(a)m, we can be get m = N(λ)/N(a) =
C(a)(x0, y0, z0) where λ = x0α1 + y0α2 + z0α3.

Suppose that m = C(a)(x0, y0, z0), then let λ = x0α1+y0α2+z0α3 ∈ a. So m = N(λ)/N(a) =
N(λa−1). Therefore b = (λ)a−1 is an ideal of norm m in the class of [a]−1. It remains to check
that this is an integral ideal. But we have that ba = (λ) ⊂ a, so multiplying by a−1 shows that
b ⊂ (1) = OK , and is therefore an integral ideal.

3.1. Group structure on ternary cubic forms. Knowing that the ternary cubic forms arise
from the class group of the number fields means that there should be some composition law which
makes them into a group too. As in the quadratic case the composition law is as follows. The
form C(x, y, z) is the composition of the two forms A(x, y, z) and B(x, y, z), written C = A ◦B,
provides there are bilinear forms

bi(x1, y1, z1;x2, y2, z2) :=
∑
j

∑
k

aijkxjxk ,

such that

C(b1(x1, y1, z1;x2, y2, z2), b2(x1, y1, z1;x2, y2, z2), b3(x1, y1, z1;x2, y2, z2))

= A(x1, y1, z1)B(x2, y2, z2) .

To obtain this, let a correspond to A, b correspond to B and c correspond to C. Then firstly
we must have [a][b] = [c] for this to be the composition. Then take bases of a and b and express
the products in terms of the basis of c (up to some principal ideal (λ)). Applying the construction
Q will give the bilinear forms in the composition law.

4. Ternary cubic forms from Q( 3
√

11)

We can apply this construction to the field K = Q( 3
√

11). This field has class number hK = 2,
so there are two ideal classes, and two classes of ternary cubic forms. The prototypical instance
of a principal ideal is obtained by OK itself, with basis [1, 3

√
11,

3
√

112]. This corresponds to the
norm form on OK , giving

OK 7→ P (x, y, z) := x3 + 11y3 + 121z2 − 33xyz .

A representative of the non-principal ideal class is obtained by the prime decomposition 2OK =
p2q2, where p2 has norm 2, and q2 has norm 4. Both of these ideals are non-principal. The ideal
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q2 has basis [2, 2 3
√

11, 1 + 3
√

11 +
3
√

112], and this gives rise to the ternary cubic form

q2 7→ Q(x, y, z) := 2x3 + 22y3 + 3x2z − 33xyz + 33y2z − 15xz2 + 25z3 .

In order to determine which primes P and Q represent, we need to determine which ideal
classes contain integral ideals of norm p. This is determined by which ideal classes appear in
the factorisation of the ideal pOK , since an ideal contains its norm. Let us analyse the situation
using the standard techniques of the Hilbert class field. The number field K is defined by the
polynomial fK(t) = t3 − 11. The Hilbert class field H is defined over Q by the polynomial
fH(t) = t6 − 9t4 + 60t2 − 16.

If we assume p is an odd prime, not dividing the discriminant of fK or fH , then we can relate
ideal factorisation to factorisation of these polynomials. This excludes the primes p = 2, 3, 11.

pOK inert: Then pOK is an ideal of norm p3. Therefore there is no ideal of norm p, and so
neither P nor Q represents p. In this case modulo p, the polynomial fK factors into irreducibles
with degrees (3), and fH factors into irreducibles with degrees (3, 3).

pOK = p1q1: In this case p1 has norm p, and q1 has norm p2. Modulo p the polynomial fK
factors as degrees (1, 2).

If p1 is principal, then P represents p, and q1 is also principal. The polynomial fH factors as
degrees (1, 1, 2, 2).

Otherwise p1 is non-princpal, then Q represents p and q1 is also non-principal. The polynomial
fH factors as degrees (2, 4).

pOK = p1p2p2: In this case each pi has norm p. The polynomial fK factors as degrees (1, 1, 1).
If all pi are principal, then only P represents p. And fH factors as degree (1, 1, 1, 1, 1, 1).
Otherwise at least one pi is non-principal. It is not possible for all to be non-principal (the

class group is Z2 and 1+1+1 = 1 6= 0), one of the pi is principal. More precisely one is principal,
and two are non-principal. So we see both(!) P and Q represent p. The polynomial fK factors
as degrees (1, 1, 2, 2).

In K Subcases fK degrees fH degrees P reps p Q reps p
pOK prime pOK principal (3) (3,3)
pOK = p1q1 p1, q1 principal (1,2) (1,1,2,2) X

p1, q1 non-principal (1,2) (2,4) X
pOK = p1p2p3 pi all principal (1,1,1) (1,1,1,1,1,1) X

pi both classes (1,1,1) (1,1,2,2) X X

The upshot of this discussion is the the following.

Theorem 4.1. For p 6= 2, 3, 11 the form

P (x, y, z) := x3 + 11y3 + 121z3 − 33xyz

represents p, if and only if

• fK(t) (mod p) factors as degrees (1, 2) and fH(t) (mod p) factors as degrees (1, 1, 2, 2),
or
• fK(t) (mod p) factors as degrees (1, 1, 1)

where

fK(t) = t3 − 11 and fH(t) = t6 − 9t4 + 60t2 − 16

are the polynomials defining K = Q( 3
√

11)/Q and H/Q the Hilbert class field of K.

Notice this is equivalent to fH(t) (mod p) has a linear factor, which is turn is equivalent to
having a root.
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Theorem 4.2. For p 6= 2, 3, 11 the form

Q(x, y, z) := 2x3 + 22y3 + 3x2z − 33xyz + 33y2z − 15xz2 + 25z3

represents p, if and only if

• fK(t) (mod p) factors as degrees (1, 2) and fH(t) (mod p) factors as degrees (2, 4), or
• fK(t) (mod p) factors as degrees (1, 1, 1), and fH(t) factors as degrees (1, 1, 2, 2).

where

fK(t) = t3 − 11 and fH(t) = t6 − 9t4 + 60t2 − 16

are the polynomials defining K = Q( 3
√

11)/Q and H/Q the Hilbert class field of K.

Theorem 4.3. For p 6= 2, 3, 11 the forms

P (x, y, z) := x3 + 11y3 + 121z3 − 33xyz and

Q(x, y, z) := 2x3 + 22y3 + 3x2z − 33xyz + 33y2z − 15xz2 + 25z3

simultaneously represent p if and only if

• fK(t) (mod p) factors as degrees (1, 1, 1), and fH(t) factors as degrees (1, 1, 2, 2)

where

fK(t) = t3 − 11 and fH(t) = t6 − 9t4 + 60t2 − 16

are the polynomials defining K = Q( 3
√

11)/Q and H/Q the Hilbert class field of K.

With these criteria we can produce the following lists of primes represented by the various
forms.

List 4.4. For p 6= 2, 3, 11, the primes ≤ 1000 which are represented by

P (x, y, z) := x3 + 11y3 + 121z3 − 33xyz

are

19, 29, 37, 43, 53, 61, 71, 83, 89, 107, 113, 131, 167, 173, 179, 193, 199, 211,
227, 229, 233, 239, 281, 293, 311, 337, 349, 353, 389, 409, 431, 457, 461, 467,
509, 521, 523, 569, 577, 617, 641, 677, 719, 727, 733, 761, 773, 809, 823, 829,
859, 863, 877, 907, 911, 929, 941, 947, 967, 977, 983

List 4.5. For p 6= 2, 3, 11, the primes ≤ 1000 which are represented by

Q(x, y, z) := 2x3 + 22y3 + 3x2z − 33xyz + 33y2z − 15xz2 + 25z3

are

5, 17, 19, 23, 37, 41, 43, 47, 59, 61, 101, 137, 149, 191, 197, 199, 211, 229,
251, 257, 263, 269, 317, 347, 349, 359, 383, 401, 409, 419, 443, 449, 457, 479,
491, 503, 557, 563, 577, 587, 593, 599, 647, 653, 659, 683, 701, 727, 733, 743,
797, 821, 823, 827, 839, 857, 859, 877, 881, 887, 907, 953, 971

List 4.6. For p 6= 2, 3, 11, the primes ≤ 1000 which are represented simultaneously by both

P (x, y, z) := x3 + 11y3 + 121z3 − 33xyz

and by

Q(x, y, z) := 2x3 + 22y3 + 3x2z − 33xyz + 33y2z − 15xz2 + 25z3

are

19, 37, 43, 61, 199, 211, 229, 349, 409, 457, 577, 727, 733, 823, 859, 877, 907



6 STEVEN CHARLTON

4.1. Example of the composition. In the case of Q( 3
√

11), the class group is Z/2, and we
have the following correspondences P ↔ 0 = [OK ], and Q ↔ 1 = [q2]. This means we should
expect that Q ◦Q = P . Here is an outline of how to show this.

Recall q2 has basis given by [α1, α2, α3] = [2, 2 3
√

11, 1 + 3
√

11 +
3
√

112]. From the class group,

we know that q22 is principal. We find that q22 = (3 + 3
√

11− 3
√

112) = (3 + 3
√

11− 3
√

112)OK , with

basis given by [λ1, λ2, λ3] = (3 + 3
√

11− 3
√

112)[1, 3
√

11,
3
√

112].
Now decompose the elements αiαj into the λ-basis. For example α1α2 = 11λ1 + 5λ2 + 2λ3.

Using this we can write N(xα1 +yα2 +zα3)N(uα2 +vα2 +wα3) = N(b1λ1 +b2λ2 +b3λ3), where
bi is a bilinear form in x, y, z and u, v, w. From there we can divide through by the ideal norms
to get the composition on cubic forms, as follow.

Q(x, y, z)Q(u, v, w) =

P (5ux+ 11vx+ 19wx+ 11uy + 22vy + 44wy + 19uz + 44vz + 81wz,

2ux+ 5vx+ 9wx+ 5uy + 11vy + 19wy + 9uz + 19vz + 36wz,

ux+ 2vx+ 4wx+ 2uy + 5vy + 9wy + 4uz + 9vz + 16wz)

5. Orders in Q( 3
√

11)

Like in the quadratic case, we can consider orders in the ring of integers, which allows us to
deal with cubic forms of ‘non-primitive’ discriminant. That is, forms which do not arise directly
from ideals in number fields.

An order in a number field K is a subring O ⊂ K which contains 1, and is a free Z-module of
rank deg(K). (So rank 2 for quadratic fields, and rank 3 for cubic fields.)

5.1. Order Z〈1, 2 3
√

11, 2
3
√

112〉 and Z〈1, 2 3
√

11, 4
3
√

112〉. The first order has index 4, and the
second has index 8. Both are contained in the ideal (2) of OK . We compute the abelian
extension A of K associated to this ideal to defined by the polynomial

fA(t) = t18 + 3t17 − 6t16 − 28t15 − 15t14 + 57t13+

+ 107t12 + 9t11 − 165t10 − 75t9 + 207t8 + 372t7+

+ 275t6 + 150t5 + 57t4 − t3 − 3t2 − 3t− 1 .

This has discriminant 28 · 336 · 1112 · 192 · 372 · 1792 · 1932 · 1888572.

For the order O1 = Z〈1, 2 3
√

11, 2
3
√

112〉, the principal ideal class has basis [1, 2 3
√

11, 2
3
√

112], so
gives rise to the ternary cubic form

R(x, y, z) :=
1

NO1
(O1)

N(x+ 2
3
√

11y + 2
3
√

112z) = x3 + 88y3 + 968z3 − 132xyz .

For the order O2 = Z〈1, 2 3
√

11, 2
3
√

112〉, the principal ideal class has basis [1, 2 3
√

11, 4
3
√

112], so
gives rise to the ternary cubic form

S(x, y, z) :=
1

NO2(O2)
N(x+ 2

3
√

11y + 4
3
√

112z) = x3 + 88y3 + 7744z3 − 264xyz .

Observe that R(x, y, z) = P (x, 2y, 2z) and S(x, y, z) = P (x, 2y, 4z). So we are in fact going to
determine which primes p are represented by P with some divisibility condition on the parameters
y and z.

It turns out that the ring class field associated to both of these orders is exactly the field A.
(*** Check *** It should contain the Hilbert class field since the Hilbert class field is unramified
at all primes, so inp particular those dividing the conductor (2). This shows that 3 × 2 = 6
divides the degree of the ring class field. Moreover, it can be shown that R(x, y, z) does not
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represent 29, so the degree must be at least 6× 2 = 12. But the only subfields with degree ≥ 12
is A itself.)

We therefore obtain

Theorem 5.1. For p 6= 2, 3, 11, 19, 37, 179, 193, 188857, the form

R(x, y, z) := x3 + 88y3 + 968z3 − 132xyz

represents p if and only if

fA(t) = t18 + 3t17 − 6t16 − 28t15 − 15t14 + 57t13+

+ 107t12 + 9t11 − 165t10 − 75t9 + 207t8 + 372t7+

+ 275t6 + 150t5 + 57t4 − t3 − 3t2 − 3t− 1

has a root modulo p.
The same result also holds for the form

S(x, y, z) := x3 + 88y3 + 7744z3 − 264xyz .

List 5.2. For p 6= 2, 3, 11, 19, 37, 179, 193, 188857, the primes ≤ 2000 which are represented by

R(x, y, z) := x3 + 88y3 + 968z3 − 132xyz

are

61, 89, 167, 239, 337, 431, 457, 461, 509, 521, 523, 641, 677, 719, 829, 907,
911, 941, 967, 1013, 1087, 1093, 1181, 1187, 1193, 1217, 1229, 1279, 1283,
1303, 1373, 1409, 1433, 1489, 1493, 1559, 1613, 1637, 1697, 1709, 1747,
1931, 1933

The same result also holds for the form

S(x, y, z) := x3 + 88y3 + 7744z3 − 264xyz .

Since the ring class field A/K has order 6, and Gal(A/K) isomorphic to the ideal class group
of the order, we see that C(O1) ∼= Z6. Similarly C(O2) ∼= Z6. Therefore we obtain 6 classes of
ternary cubic forms from these orders. We might ask what primes these represent?
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