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1 Introduction
The polylogarithms Lis(z) are an important and frequently occurring class of functions, with
applications throughout mathematics and physics. In this report I will give an overview of some
of the theory surrounding them, and the questions and lines of research still open to investigation.

I will introduce the polylogarithms as a generalisation of the logarithm function, by means
of their Taylor series expansion, multiple polylogarithms will following by considering products.
This will lead to the idea of functional equations for polylogarithms, capturing the symmetries
of the function. I will give examples of such functional equations for the dilogarithm. One of

1



the main problems in the theory concerns finding non-trivial functional equations for the higher
polylogarithms.

Then I will explore the connection between polylogarithms and the Dedekind zeta function of
a number field. The Dedekind zeta function ζF (z) is an important invariant of a number field,
capturing much arithmetic data, including the class number hF , discriminant ∆F and regulator
RegF , in its behaviour at the point z = 1 ∈ C. Its value at other special points should also
provide significant arithmetic information the number field. Zagier conjectures, in a precise way,
that the value of ζF (z) at a positive integer n is given in terms of order n polylogarithms.

I will move on to the notion of iterated integrals I(a0; a1, . . . , an; an+1), and a purely algebraic
lifting of them in the form of Goncharov’s motivic iterated integrals IM(a0; a1, . . . , an; an+1).
Lifting to motivic iterated integrals introduces new algebraic structures not visible on the level of
numbers, particularly the Hopf algebera coproduct ∆. Iterated integrals can be used to encode
polylogarithms, so motivic viewpoint should imbue additional structure on them.

Then I will come to the polygon algebra of Gangl, Goncharov and Levin. It provides a way of
capturing important combinatorial properties of multiple polylogarithms, in their iterated integral
form, by means of polygons decorated form a set R. The differential on the polygon algebra
mimics a differential on algebraic cycles, which themselves correspond to multiple polylogarithms.
Polygons admit many other internal structures. Agarwala introduces more general differentials
on polygons which helps in exploring the dihedral symmetries of multiple logarithms. Polygons
have an operadic structure, a way of gluing them together, which bears similarities to the mosaic
operad that appears in connection with tessellations of moduli spaces. The polygon algebra
also admits a differential by collapsing vertex-vertex arrows, a similar structure occurs in the
coproduct of Dupont’s dissection polylogarithms.

Next I will turn to the notion of a multiple zeta value (abbreviated MZV) ζ(n1, . . . , nk), a
generalisation of a Riemann zeta value ζ(n) to multiple arguments, which is defined by an infinite
series and is nothing more than a special value of the multiple polylogarithm. The transcendence
properties of MZVs are very mysterious, with numerous conjectures having entered mathematical
folklore, but little provably known. One expects all relations between MZVs to be homogeneous in
weight, one expects certain MZVs to be algebraically independent, one has an explicit conjectural
formula for the dimension of weight k MZVs and suggestions for a basis. A standard family of
relations between MZVs can be described by comparing two distinct multiplicative structures,
and these double shuffle relations are expected to generate all relations between MZVs.

Lastly I will introduce Francis Brown’s notion of a motivic MZV ζm(n1, . . . , nk), which further
lifts Goncharov’s motivic iterated integrals. These motivic MZVs have recently been used to
provide partial proofs for some of the MZV folklore conjectures: we get spanning sets and bounds
on the dimension of the space of MZVs of weight k. In this lifting we gain a new algebraic
structure, a coaction, which forms the basis of a decomposition algorithm on motivic MZVs, and
provides combinatorial tools to study MZV relations. I will use this coaction to investigate some
known and conjectured relations between MZVs.

2 Polylogarithms
2.1 Definitions
As a generalisation of the of the ordinary logarithm function, the order s polylogarithm is defined
to be:

Lis(z) :=
∞∑
n=1

1
ns
zn
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which converges inside the unit disc |z| < 1. This function was first considered by Leibniz and
Bernoulli in 1696, [32].

Taking s = 1, one finds:

Li1(z) =
∞∑
n=1

1
n
zn = − log(1− z)

so this does genuinely generalise the logarithm function.
Computing the derivative of Lis(z), one finds that:

d
dt Lis(z) = 1

z
Lis−1(z)

which means the polylogarithm may be analytically continued to the cut complex plane C \ [1,∞)
by:

Lis(z) =
∫ z

0
Lis−1(t)dt

t

More generally, one can also define the multiple polylogarithm as in [26]:

Lis1,s2,...,sm(z1, z2, . . . , zm) :=
∑

0<n1<n2<···<nm

1
ns1

1 n
s2
2 · · ·n

sm
m
zn1

1 zn2
2 · · · znmm

Multiple polylogarithms would arise naturally enough when looking at the product of two
polylogarithms. Consider:

Lis(z1) Lit(z2) =
∞∑
n=1

1
ns
zn1

∞∑
m=1

1
mt

zm2 =
∑
n,m>0

1
nsmt

zn1 z
m
2

The double sum breaks up into pieces where n < m, n = m or n > m, giving:

=
∑

0<n<m

1
nsmt

zn1 z
m
2 +

∑
0<n=m

1
nsmt

zn1 z
m
2 +

∑
n>m>0

1
nsmt

zn1 z
m
2

= Lis,t(z1, z2) + Lis+t(z1z2) + Lit,s(z2, z1)

and each term can be recognised as a polylogarithm, or multiple polylogarithm.

Polylogarithms and multiple polylogarithms attract considerable interest because appear in a
vast number of disparate areas of mathematics and physics. On the physics side, they appear
as closed form solutions for the Fermi-Dirac and Bose-Einstein distributions [36], and in the
computation of Feynman diagram integrals [39].

In mathematics they occur in algebraic K-theory [3] and in the computation of the volume of
hyperbolic manifolds [25, 35]. In connection with the value of L-functions, they form an integral
part of Zagier’s polylogarithm conjecture which ultimately concerns special values of the Dedekind
zeta function [41]. Certain special values of multiple polylogarithms gives us the multiple zeta
values, a class of numbers which attract significant interest in their own right.

2.2 Special Values, Functional Equations and Singled Valued Versions
The dilogarithm is the only mathematical function with a sense of humour. – Zagier

The dilogarithm is the order s = 2 polylogarithm, the first polylogarithm beyond the elementary
log function. According to Zagier [44], in contrast to most other functions which have either no
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exactly computable special values, or have a countable easily describable set, the dilog seems to
have only a scattered few:

Li2(0) = 0, Li2(1) = π2

6 , Li2(−1) = −π
2

12 , Li2
( 1

2
)

= π2

12 −
1
2 log2(2),

Li2
(

3−
√

5
2

)
= π2

15 − log2
(

1+
√

5
2

)
, Li2

(
−1+

√
5

2

)
= π2

10 − log2
(

1+
√

5
2

)
,

Li2
(

1−
√

5
2

)
= −π

2

15 + 1
2 log2

(
1+
√

5
2

)
, Li2

(
−1−

√
5

2

)
= −π

2

10 + 1
2 log2

(
1+
√

5
2

)
But compared with its limited number of special values, the dilogarithm satisfies a huge

number of functional equations. ‘Trivially’ there is a inversion formula:

Li2
(

1
z

)
= −Li2(z)− π2

6 −
1
2 log2(−z)

a duplication formula:
Li2(z2) = 2(Li2(z) + Li2(−z))

Less trivially a reflection formula:

Li2(1− z) = −Li2(z) + π2

6 − log(z) log(1− z)

Foremost among the functional equations is the two-variable five-term relation:

Li2(x) + Li2(y) + Li2
(

1− x
1− xy

)
+ Li2(1− xy) + Li2

(
1− y

1− xy

)
=

π2

6 − log(x) log(1− x)− log(y) log(1− y) + log
(

1− x
1− xy

)
log
(

1− y
1− xy

)
Here the entire right hand side is a combination of elementary functions.

Higher polylogarithms are known to satisfy various trivial functional equations for all orders.
At least for small orders they also satisfy non-trivial functional equations, with such functional
equations expected for all orders [20].

At this point is is also worth introducing a variant of the dilogarithm. The Bloch-Wigner
dilogarithm is defined by:

D(z) := Im(Li2(z)) + arg(1− z) log |z|

This defines us a single-valued, real analytic continuous function on C \ {0, 1}, by eliminating the
jump of 2πi log |z| when crossing the branch cut (1,∞).

The Bloch-Wigner dilog satisfies functional equations of its own corresponding to those of the
dilogarithm. The Bloch-Wigner functional equations are simpler because they do not contain the
lower-order logarithms terms. For example the five-term relations becomes exactly:

D(x) +D(y) +D

(
1− x
1− xy

)
+D(1− xy) +D

(
1− y

1− xy

)
= 0

A similar variant of the general polylogarithm Lim(z) can be given by:

Pm(z) =
Re(·) if m odd
Im(·) if m even

}
m−1∑
k=0

2kBk
k! logk |z|Lim−k(z)

where Bk is the k-th Bernoulli number [41]. It will be necessary to use this function when making
the link to special values of the Dedekind zeta function.
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2.3 The Dedekind Zeta Function and Polylogarithms
One significant area where polylogarithms appear is in connection with the Dedekind zeta function
of a number field, or more specifically its value at special points.

As a generalisation of the Riemann zeta function, the Dedekind zeta function associated to
the number field F is defined by:

ζF (s) :=
∑

I 6=(0)⊂OF

1
N(I)s

where the sum is taken over all non-zero, integral ideals of F , and N(I) is the ideal norm of
I. The existence and uniqueness of factorisation of an ideal into prime ideals in a number field
is reflected analytically by the fact that the Dedekind zeta function admits an Euler product
expansion:

ζF (s) =
∏

p6=(0)⊂OF

1
1−N(p)−s

where the product runs over all non-zero prime ideals of OF , [Section 10.5.1 in 12].
The series above for ζF (s) converges for Re(s) > 1, but ζF (s) can be analytically continued

to a meromorphic function on the complex plane C, with only one simple pole at s = 1.

When looking at the number field F = Q, the Dedekind zeta function ζQ(s) is simply the
usual Riemann zeta function ζ(s). In this case, the Riemann zeta function gives significant
arithmetic information about Q and its ring of integers Z, particularly about the distribution of
prime numbers. So one would naturally expect the Dedekind zeta function ζF (s) to give similar
information about the number field F , its ring of integers OF , and the distribution of prime
ideals in OF .

An instance of this is in the so-called analytic class number formula for the residue of ζF (s)
at s = 1, which is given in terms of some arithmetic data of the number field F .

Theorem 2.1 (Analytic Class Number Formula, [Theorem 10.5.1 in 12]). Give a number field
F , the residue of the Dedekind zeta function ζF (s) at its simple pole s = 1 is given by:

Ress=1 ζF (s) = 2r1(2π)r2hF RegF
wF
√
|∆F |

where:
− r1 is the number of real embeddings of F ,
− r2 is the number of conjugate pairs of complex embeddings of F ,
− hF is the class number of F ,
− wF is the number of roots of unity F contains,
− ∆F is the discriminant of F , and
− RegF is the regulator of F .

The regulator RegF of the number field F is defined by taking the volume of a fundamental
domain for the lattice spanned by the units of F in logarithmic space. This leads to an expression
for RegF in terms of the logarithm of elements of F . This can be seen as relating the ‘value’ of
ζF (1), or rather the ‘value’ of ζF (1)/ζ(1), to the first polylogarithm − log(1− x). This is a first
instance of Zagier’s conjecture.

The next instance comes from considering ζF (2), and taking a detour through hyperbolic
space. The volume of an ideal tetrahedron in hyperbolic 3-space, with vertices {0, 1,∞, z} is
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given by D(z), with D the Bloch-Wigner dilogarithm defined earlier, [35]. For F an imaginary
quadratic field, the group SL2(OF ) is a discrete subgroup of SL2(C), therefore acts on hyperbolic
space H3 by isometries.

Humbert’s volume formula [27] gives the volume of the quotient space as:

Vol(H3/ SL2(OF )) = |∆k|3/2

4π2 ζF (2)

But this quotient space can be triangulated by ideal tetrahedron with vertices in P1(F ) inside
the boundary P1(C) of H3. This means:

ζF (2) = π2

3 |∆F |3/2
∑
ν

nνD(zν)

for some zν ∈ F . So ζF (2) can be expressed in terms of dilogarithms of elements of the number
field F . Zagier [p. 17 of 41] gives the following example for F = Q(

√
−7):

ζF (2) = 4π2

21
√

7

(
2D
(

1 +
√
−7

2

)
+D

(
−1 +

√
−7

4

))
A similar analysis works for general number fields [40], and leads to the result that:√

|∆F |
π2(r1+r2) ζF (2)

is a rational multiple of an r2 × r2 determinant with entries
∑
niD(zi), xi ∈ F .

By finding elements in the Bloch group of F , we can use the theorem in Part I, Section 1 of
[45], to evaluate ζF (2) in other cases, up to some rational factor. I find elements in the Bloch
group with computer assistance.

Example 2.2. Consider the number field F = Q(
√
−5), which has r1 = 0, r2 = 1, discriminant

−20. I find:
ζF (2) = π2

30
√

20

(
4D(2 +

√
−5) + 3D( 2+

√
−5

4 ) + 20D( 2+
√
−5

3 )
)

which is consistent with the result above.
This result corresponds to the fact that:

4[2 +
√
−5] + 3[ 2+

√
−5

4 ] + 20[ 2+
√
−5

3 ]

is an element of the Bloch group B(F ).

Now consider F = Q(α), where α is a root of x3 + x− 1. This field has r1 = 1, r2 = 1, and
discriminant −31. Then:

ζF (2) = 4π4

93
√

31
(
2Dσ(−1− 2α2) + 2Dσ(2− α)− 2Dσ(1 + 2α2)

)
where σ is the embedding F ↪→ C, which sends α to the root −0.34 . . .+ 1.16 . . . i of x3 + x− 1
with strictly positive imaginary part.

This corresponds to the fact that:

2[−1− 2α2] + 2[2− α]− 2[1 + 2α2]

is an element of the Bloch group B(F ).
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Results like this are expected to holds when evaluating ζF (n) for any integer n, connected
with higher analogues of the Bloch group, and the higher polylogarithms. As a simple example of
this, for F = Q(

√
−5), as above, we have:

ζF (3) = 3π3

35
√

20
2P3( 1

2 )

The general case is given in its abstract algebraic K-theory formulation in [41] by:
Conjecture 2.3 (Zagier’s Polylogarithm Conjecture). There is a quasi-isomorphism ψ making
the following diagram commute:

K2m−1(F ) Bm(F )

Rr±

ψ

RegmF (Pm, . . . , Pm)

where K2m−1(F ) is an algebraic K-group of F , and Bm(F ) is a Bloch group.
As a consequence of this, the formulation in terms of special values of the Dedekind zeta

function, taken from Conjecture 1 in [13], reads as follows:
Conjecture 2.4. If F is a number field, and σ1+r2 , . . . , σr1+r2 : F → R are its real embeddings,
and σ1 = σ1+r1+r2 , . . . , σr2 = σr1+2r2 : F → C are its complex embeddings. Let n ≥ 2 be
an integer, write dn = r1 + r2 if n odd, and dn = r2 if n even. Then there exists elements
y1, . . . , ydn ∈ Q[F \ {0, 1}] such that, up to Q∗:

ζf (n) = π(r1+2r2−dn)n |∆F |−1/2 det(Pn(σi(yj)))

where 1 ≤ i, j ≤ dn.
So far Zagier’s conjecture has only been proven for n ≤ 3, it follows from the work of Bloch

and Suslin in the case n = 2, and by Goncharov [24] in the case n = 3.

2.4 Iterated Integrals and Their Properties
For complex numbers xi, an iterated integral, introduced by Chen [11], is defined by:

I(x0;x1, . . . , xm;xm+1) :=
∫

∆γ

dt1
t1 − x1

∧ · · · ∧ dtm
tm − xm

where γ is a path from x0 to xm+1 in C \ {x1, . . . , xm}, and the region of integration ∆γ consists
of all m-tuples (γ(t1), . . . , γ(tm)), with t1 ≤ t2 ≤ · · · ≤ tm.

It is possible to write the multiple polylogarithms defined above as iterated integrals. One
has:

Lin1,...,nk(z1, . . . , zk) = (−1)kIn1,...,nk

(
1

z1 · · · zk
, . . . ,

1
zk

)
where we have used the shorthand:

In1,n2,...,nk(x1, x2, . . . , xk) := I(0; x1, 0, . . . , 0︸ ︷︷ ︸
n1 arguments

, x2, 0, . . . , 0︸ ︷︷ ︸
n2 arguments

, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
nk arguments

; 1)

The iterated integrals I(x0;x1, . . . , xn;xn+1) satisfy a number of standard and well-known
properties, listed below:
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− Equal boundaries: I(x0;x1, . . . , xn;xn+1) = 0 if x0 = xn+1, and n ≥ 1.
− Empty integral/unit: I(x0;x1) = 1, for any x0, x1.
− Path composition: for fixed y:

I(x0;x1, . . . , xn;xn+1) =
m∑
k=0

I(x0;x1, . . . , xk; y)I(y;xk+1, . . . , xm;xm+1)

The product of two iterated integrals is given by the shuffle product of their parameters:

I(a;x1, . . . , xm; b)I(a;xm+1, . . . , xm+n; b) = I(a; {x1, . . . , xm}� {xm+1, . . . , xm+n}; b)

=
∑

σ∈Sm,n

I(a;xσ(1), . . . , xσ(m))

Here Sm,n is the set of (n,m)-shuffles, those permutations σ in Sm+n satisfying σ(1) < σ(2) <
· · · < σ(m), and σ(m+ 1) < σ(m+ 2) < · · · < σ(m+ n). This means the set {1, 2, . . . ,m+ n}
is permuted, but the subsets {1, 2, . . . ,m} and {m + 1,m + 2, . . . ,m + n} maintain the same
ordering – they are merely shuffled.

Together these properties imply reversal of paths:

I(x0;x1, . . . , xn;xn+1) = (−1)nI(xn+1;xn, . . . , x1, x0)

2.5 The Hopf algebra of (Motivic) Iterated Integrals
Goncharov [22] shows how these iterated integrals I(x0;x1, . . . , xn;xn+1), defined above, can be
upgraded to framed mixed Tate motives over Q, at least when the parameters xi are algebraic
numbers. This gives a motivic iterated integral:

IM(x0;x1, . . . , xn;xn+1) ∈ An(Q)

which by definition lies in a commutative, graded Hopf algebra A•(Q).
Assuming the parameters xi are algebraic numbers, since there are finitely many, one can

suppose they lie in some number field F , rather than just in Q. Then the graded, commutative
Hopf algebra A•(F ) is the fundamental Hopf algebra of the abelian categoryMT (F ) of mixed
Tate motives over F .

Since the motivic iterated integrals lie in a Hopf algebra, they admit a coproduct ∆. This is a
genuinely new algebraic structure on iterated integrals; it is completely invisible at the level of
numbers. Goncharov proves that the coproduct is given by:

∆IM(a0; a1, . . . , an; an+1) =∑
0<i0<i1<...<ik<ik+1=n+1

IM(a0; ai1 , . . . , aik ; an+1)⊗
k∏
p=0

IM(aip ; aip+1, . . . , aip+1−1; aip+1)

This formula has an elegant interpretation in terms of cutting off segments of a semicircular
polygon. For example, the term:

IM(a0; a1, a3, a6; a9)⊗ IM(a0; a1)IM(a1; a2; a3)IM(a3; a4, a5; a6)IM(a6; a7, a8; a9)

in the coproduct ∆IM(a0; a1, . . . , a8; a9) corresponds to cutting off the indicated segments from
the semicircular polygon below:
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a0

a1

a2

a3
a4 a5

a6

a7

a8

a9

The other terms arise from taking all other possible choices of segments.

There is a cannonical surjective homomorphism:

p : IM(a0; a1, . . . , an; an+1) 7→ I(a0; a1, . . . , an; an+1)

which realises a motivic iterated integral by its classical counterpart, so that any relations satisfied
on the motivic level also hold on the level of classical integrals.

Conjecturally, no information is lost when moving from classical to motivic iterated integrals,
so that this in fact defines an isomorphism between motivic and classical integers; any relations
between classical iterated integrals should lift to a motivic incarnation. Regardless, as a purely
algebraic lifting, we gain the structure of a Hopf algebra, and eliminate the transcendence problems
that plague classical iterated integrals.

I will touch on these ideas more when I introduce Brown’s motivic MZVs, which further lift a
special class of iterated integrals.

2.6 The Polygon Algebra
In order to capture combinatorially, the properties of polylogarithms and multiple polylogarithms,
Gangl, Goncharov, and Levin [18] define the tree and polygon algebras. Triangulated polygons
are mapped to trees, and these trees map to admissible algebraic cycles using the forest cycling
map. These algebraic cycles are an avatar, in a precise sense, of polylogarithms.

A R-deco polygon is an oriented polygon with distinguished root side, and whose edges are
decorated with elements from a given set R. The orientation induces an ordering on the sides
and vertices of the polygon; the root side is the last side, and the orientation is determined by
marking the first vertex (the intersection of the first and root sides) with a bullet •.

For example, this is an R-deco hexagon, with decorations from the set R = {a1, a2, a3 . . .}:

a1

a2

a3

a4

a5

a6

	

The polygon has anti-clockwise orientation (which is mathematically positive), so the side labelled
a1 is the first side, the side labelled a2 is the second side, etcetera. Here, the orientation of the
polygon is marked in the interior for clarity, but would normally be read off from the first vertex
and root side. The first vertex is marked with the bullet •, the root side distinguished by a
double line – together this means first edge is the edge marked a1, and the polygon is oriented
anti-clockwise.

The weight χ(π) of an R-deco n-gon π is defined to be n− 1, the number of non-root sides.
So the R-deco hexagon above has weight 5.
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Assemble the R-deco polygons of weight n into a Q-vector space Vn(R), where we take
V0(R) := Q. The graded vector space of polygons is then defined by:

V•(R) :=
∞⊕
n=0

Vn(R)

The polygon algebra is P ∗• =
∧∗

V•, the exterior algebra of the grade vector space of polygons.
There is a differential on the polygon algebra, which mimics the differential on algbraic cycles,

meaning the mappings from polygons to trees to algebraic cycles holds on the level of differential
graded algebras. The differential is defined using arrows in the R-deco polygons.

An arrow in an R-deco polygon π is a directed line segment beginning at a vertex of π, and
ending at the interior of a side of π. For example, the arrows α and β below:

a1

a2

a3

a4

a5

a6

α

β

An arrow is backwards if in the linear ordering of sides and vertices, its end is before its start.
For example the arrow β above, is backwards. The arrow α is forwards.

Given an arrow α, one associated a root polygon π•= containing the root side and first vertex,
and a cutoff polygon πt by collapsing the arrow α, and inducing a root orientation on the new
polygons. The starting vertex determines the new first vertex, and the ending side the root side
of the cutoff polygon:

π =

a1

a2

a3

a4

a5

a6

α

ρ•=

ρt
 π•= = a1

a2

a5

a6

and πt =
a3 a4

a5

The differential ∂π of an R-deco polygon π is defined by:

∂π =
∑

arrows α
sgn(α)π•= ∧ πt

where:

sgn(α) =
{

1 if α forwards
(−1)χ(πt) if α backwards

This is genuinely a differential ∂2π = 0. This differential is closely related to Goncharov’s
coproduct on iterated integrals defined in subsection 2.5. Adding more arrows to a polygon gives
the notion of a dissection, which can be used to interpret the bar construction of the differential
graded polygon algebra.

An extension of the polygon algebra, to allow for undecorated sides, gives us the promised corre-
spondence with multiple polylogarithms. Roughly speaking, the polylogarithm In1,...,nr (a1, . . . , ar)
in iterated integral form corresponds to the R-deco polygon:

π = [a1,∅, . . . ,∅︸ ︷︷ ︸
n1 times

, . . . , ar,∅, . . . ,∅︸ ︷︷ ︸
nr times

, 1]
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Here the labels of the sides are given from first to root, with ∅ denoting an undecorated side. In
[15] Duhr, Gangl, and Rhodes show how the symbol of a polylogarithm can be calculated from
maximal dissections of the corresponding R-deco polygon. The symbol, or ⊗m-invariant defined
in [22], is an invariant of polylogarithms, living in a tensor algebra to make calculations easier,
which reflects the combinatorial properties of polylogarithms and the functional equations they
satisfy.

2.7 Algebraic Structures on Polygons
2.7.1 Other Differentials on Polygons

The obvious dihedral symmetries of polygons naturally raises the question of how multiple
polylogarithm behave under dihedral symmetries. In [1], Agarwala defines a number of different
differentials on the polygon algebra in an effort to study the dihedral symmetries of multiple
polylogarithms.

She gives a general criterion for checking whether a particular ‘rule’ generates a differential by
relating it to a Hopf algebra structure on the dual trees defined by dissections. This generalise
the proof in [18] that ∂ is a differential on the polygon algebra.

By defining perturbations of these differentials, where the rule employed differs on certain
carefully chosen sets of arrows, she is able to relate the rotations and reflections of polygons to
the original polygon, modulo some co-ideal. This gives some corresponding relations on the level
of multiple polylogarithms.

2.7.2 Operadic Structure of Polygons

It is reasonably clear that there is a natural way of gluing polygons together. More precisely,
polygons have an operadic structure.

In order to motivate/explain this observation, I need to define what an operad is. Much more
information about operads, beyond the following definition, is given in [33]. A (non-symmetric)
operad P is a collection of k-vector spaces P(n) for n = 0, 1, 2, . . ., whose elements should be
though of as formal n-ary operations. There is a composition:

γ : P(`)⊗ (P(n1)⊗ · · · ⊗ P(n`))→ P(n1 + · · ·+ n`)

which amounts to plugging the output of ` operations into the input of one `-ary operation. And
a morphism η : k → P(1) called the unit.

This composition is required to be associative – given three levels of operations, composing
levels 1 and 2, then composing with level 3 is the same as first composing levels 2 and 3, then
composing the result with level 1. To write this formally means requiring the following diagram
to commute:

P(n)⊗ (
⊗n

t=1 P(it))⊗ (
⊗i

r=1 P(jr)) P(i)⊗ (
⊗i

r=1 P(jr))

P(j)

P(n)⊗ (
⊗n

t=1(P(it)⊗ (
⊗it

r=it−1+1 P(jr)))) P(n)⊗ (
⊗n

t=1 P(ht))

γ ⊗ id

∼= shuffle

id⊗(
⊗

t γ)

γ

γ

The unit axioms say the following two diagrams commute:

11



P(n)⊗ k⊗n P(n)

P(n)⊗ P(1)⊗n

∼=

id⊗η⊗n
γ and

k ⊗ P(i) P(i)

P(1)⊗ P(i)

∼=

η ⊗ id
γ

Notice η picks out a distinguished element η(1k) ∈ P(1). The unit axioms amount to saying
η(1) is the identity operation. Composing with η(1) returns the starting operation.

There is also the notion of a symmetric operad. This means that P(n) not just a vector space,
but is in fact a representation of Sn; we can act on vectors in P(n) by permutations. This action
of Sn should be though of as permuting the inputs to an n-ary function. It allows us to capture
the symmetries of the n-ary operations.

For example, suppose that in some symmetric operad P, µ ∈ P(2) is some sort of binary
(multiplication) operation. Since P(2) is a representation of S2, we have the notion of (12) · µ.
We have that ((12) · µ)(a, b) = µ(b, a), acting by (12) permutes the inputs according to the
permutation. To say that µ is commutative means that µ(b, a) = µ(a, b), so on the level of
abstract operations (12) · µ = µ. This can be restated as span{µ} is the trivial representation of
S2.

On upgrading to symmetric operads, we have to add another axiom which says that the
composition is equivariant with respect to the action of Sn. Formally it means that the following
diagrams commute:

P(n)⊗ (P(i1)⊗ · · · ⊗ P(in)) P(n)⊗ (P(iσ(1))⊗ · · · ⊗ P(iσ(n)))

P(i) P(i)

σ ⊗ σ−1

σ(iσ(1),...,σ(n))
γ γ

P(n)⊗ (P(i1)⊗ · · · ⊗ P(in)) P(n)⊗ (P(iσ(1))⊗ · · · ⊗ P(iσ(n)))

P(i) P(i)

id⊗(τ1 ⊗ · · · ⊗ τn)

τ1 ⊕ · · · ⊕ τn
γ γ

Of course it is not especially easy to interpret what these diagrams say. Tracing through the
maps from the upper left, one sees that the idea of the composition being equivariant can be
summed up nicely with the following schematic picture:

g1 g2 g3

f

g1 g2g3

f

=
σf

12



Now we can see how the gluing of polygons can give a operad structure, at least on the vector
space of F ∗-deco polygons. The root side of the polygon:

π =

a1

a2

a3

a4

a5

a6

naturally distinguishes it from the other sides, and through operadic glasses one could view it as
some sort of output. The remaining sides could be seen as inputs to π, and a composition could
be obtained by gluing other polygons to them. The labels on the glued edges won’t necessarily
match; to remedy this, scale the gluing polygon so they do. For example gluing into the first slot,
with the partial composition ◦1:

a1 a2

a3

◦1 b1

b2

b3

b4

=

b1a1
b4

b2a1
b4

b3a1
b4

a2

a3

b4a1
b4

= a1

At least superficially, this idea of composition is very similar to the composition of polygons
in the mosaic operad [14]. That operad consists of polygons, with marked diagonals. They are
glued together along their sides, but the gluing is remembered as a diagonal in the new polygon.
Since there is no distinguished root side, this operad is in fact a cyclic operad as defined by [21],
in the sense that Sn+1 can act on P(n) in such a way that inputs and output exchanged.

2.7.3 A VV-Differential on Polygons

I can also define another differential on the polygon algebra, distinctly different from the differ-
entials used in either of [1, 18]. This differential is defined using VV-arrows going between two
vertices of an R-deco polygon.

Given a vertex-vertex arrow on an R-deco polygon, the root region ρ•= and cutoff region ρt
are defined as follows:

α

ρt

ρ•=

The induced polygons come from collapsing the arrow α, and choosing the first vertex of the
cut-off polygon to be the vertex coming from the collapsed arrow. The root side of the cut-off
polygon is chosen to be the edge pointed to by α in the cut-off region.

1
2

3

4
5

6

7

89

α

ρt

ρ•=

 
1

7

8

9

π•= ∧

2

3

4

5

6

πt
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An arrow α is called backwards if it ends before it begins, using the ordering of vertices with
the first vertex being •, and the last vertex being the other vertex of the root side =.

α

β

On the left, α is forwards, and on the right β is backwards.
For an R-deco polygon π, define:

∂VVπ =
∑

α a VV-arrow
first vertex •/∈α

sgn(α)π•= ∧ πt

where

sgn(α) =
{

1 α forwards
(−1)# sides πt α backwards

and we do not bother with trivial arrows, those arrows going between adjacent vertices.
The differential ∂VV is extended to the rest of the polygon algebra as expected using the

Leibniz rule ∂(a ∧ b) = ∂a ∧ b+ (−1)deg aa ∧ ∂b.

Proposition 2.5. The construction ∂VV is a differential: ∂2
VV = 0 on R-deco polygons.

The proof of this will proceed by a series of lemma which show how different combinations of
arrows can be made to cancel in the second derivative.

Firstly observe that terms in ∂2 arise from 2-VV-dissections of the polygon π, where the
arrows are given an ordering for which is cut off first. We then get the term in ∂2 by cutting off
each arrow in turn.

Notice that some of these 2-VV-dissections give exactly the same term in ∂2 (the same in the
sense that they make the same sequence of cuts, rather than just coincidentally give the same
term). For example:

1

2

3 4

5

6
7

1

2
is the same sequence of cuts as

1

2

3 4

5

6
7

1
2

since the head and tail of arrow 1 are identified after cutting. This is the only way in which
‘different’ dissections can be equivalent, since the first arrow is obviously determined by the term
it give in ∂π, and the second arrow has at most two pre-images in the original polygon. There is
only one identified vertex in the quotient polygons, and so only one end of the second arrow is
ambiguous. In this situation, we choose the configuration of arrows where the meeting ends are
different – the right hand picture above.

Lemma 2.6. If the dual tree of the dissection is non-linear a− (b)− c, then changing the order
of the cut-off gives ters: (b ∧ c) ∧ a and (b ∧ a) ∧ c, with the same sign.

14



Proof. Pictorially it is clear the terms are as indicated.

1

2

3

4 5

6

7

8
9

1 2

b

a

c

and

1

2

3

4 5

6

7

8
9

2 1

b

a

c

or

1

2

3

4 5

6

7

8
9

1 2ba c and

1

2

3

4 5

6

7

8
9

2 1ba c

The second arrow always lies in the root region after cutting the first arrow. So the there is
no complication with introducing a new root edge for the second arrow to interact with. The root
edges and first vertices of the two cut-off regions can be read off directly from the diagram without
needing to worry about the ordering of arrows. So we get the terms (a1b2c) (b|c)∧a (b∧c)∧a,
and (a2b1c) (a|b) ∧ c (b ∧ a) ∧ c. Each time, the second cut happens in the first term, so by
Leibniz both gain +1.

Since the second arrow lies in the root region after cutting the cut, it also means the direction
of the second arrow is not changed, the vertices of the root region retain the same ordering. So
the sign of the arrow is the same whether cut first or second. So we are just multiplying both
possibilities by the same sign: 1 or (−1)# sides a, then 1 or (−1)# sides c.

Lemma 2.7. If the dual tree is linear (a)− b− c, but the arrows to not intersect anywhere (not
even at the end points), then changing the cut-of order gives the same term with opposite signs.

Proof. Pictorially it is also clear that the same terms appear. The arrows are far enough apart
that the introduction of another root edge after the first cut does not cause a problem

1

2

3

4 5

6

7

8
9
1

2

a

b

c

and

1

2

3

4 5

6

7

8
9
2

1

a

b

c

We get (a1b2) a ∧ (b|c) −a ∧ (b ∧ c), and (a2b1c) (a|b) ∧ c (a ∧ b) ∧ c.
When cutting the upper edge first, we pick up an extra minus sign from the Leibniz rule, since

the second cut is pushed into the second factor of the wedge product.
However, we need to check that the remaining signs are correct. Notice that if the upper

arrow is backwards, then when cutting it first the lower arrow reverses direction in the induced
polygon. Check the possible combinations (in the table we include the sign coming from Leibniz):

up down down after cut parity from up then down parity from down then up
fwd fwd fwd 0 + 0 + 1 0 + 0
fwd bwd bwd 0 + c+ 1 c+ 0
bwd fwd bwd (b+ c) + c+ 1 = b+ 1 0 + b
bwd bwd fwd (b+ c) + 1 c+ b

And indeed the signs are always opposite.

Lemma 2.8. If the dual tree of the dissection is linear, and the arrows intersect, then the second
arrow will be nearest the root. By reversing it, and repositioning the first to keep the canonical
form, we get terms (a ∧ b) ∧ c, and (a ∧ c) ∧ b, with the same sign.

15



Proof. If the dual tree is linear and the arrows intersect, then we must cut the lower arrow first,
otherwise the lower arrow will start at the root of the cut-off polygon. Hence the upper arrow is
2, and the lower arrow is 1.

Now reversing the upper arrow and repositioning gives us the following:

1

2

3

4 6

7

8

9
10

2
1

a

b

c

←→

1

2

3

4 6

7

8

9
10
2

1

a

b

c

Both of these have the same type of dual tree, and arrow behaviour: they are linear and arrows
intersect.

We can see that both of these give appropriate terms with the same signs by going to the
non-cannonical choice of dissection. Swap which end of the first arrow the second arrow intersects.
We get the same terms but with the following dissections:

1

2

3

4 6

7

8

9
10

2
1

a

b

c

←→

1

2

3

4 6

7

8

9
10

2
1

a

b

c

So we are in fact just in the case where the dual tree is non-linear, and we have swapped the
order of cut off. We know this gives the same sign and the terms as described above by the first
lemma.

Proof of Proposition. We have now established a pairing of all terms in ∂2
VV. In each case we

see the terms are equal but with opposite sign. Hence the terms cancel pairwise, and ∂2
VVπ = 0

as claimed.

This is probably not right way to go about introducing an extra grading by diagonals on the
polygon algebra. However it’s similarity to other constructions, like the Hopf algebra coproduct
on Dupont’s dissection polylogarithms [16], may shed some light on how to generalise the polygon
algebra in this direction. Dupont defines a dissection diagram as a rooted polygon with diagonal
arrows, and uses this to encode his dissection polylogarithm’s. Terms in the coproduct for these
dissection diagrams come from collapsing subsets of diagonal arrows in the diagram.

It has been suggested to me that polygons with diagonals seem related to blow-ups of curves
and the boundary components of the moduli spaces M0,n, defined in [10], this is also captured in
the superficially similar mosaic operad. And that the dual tree of a fully triangulated polygon
has some correspondence with maximally degenerate curves, defined in [34]. These glimpses of
similar and related structures provide various new avenues to explore.

3 Multiple Zeta Values
3.1 Definitions
The multiple zeta values (henceforth abbreviated MZVs) are an intriguing class of numbers first
studied by Euler in the special case of double zeta values (DZVs). The general case is introduced
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by Hoffman [29]. The multiple zeta function is a generalisation of the Riemann zeta function to a
k-tuple of arguments, defined by:

ζ(s1, s2, . . . , sk) :=
∑

0<n1<n2<···<nk

1
ns1

1 n
s2
2 · · ·n

sk
k

Taking s1, s2, . . . , sk to be integers in Z>0, we get the multiple zeta value ζ(s1, s2, . . . , sk). For
this to be convergent we require sk > 1.

Remark. There are two competing conventions about the index of summation. Some take
n1 > n2 > · · · > nk > 0, rather than the index 0 < n1 < n2 < . . . < nk used above. This
essentially has the effect of reversing the arguments to the multiple zeta function, and means
convergence requires s1 > 1. One must be aware of which convention is in use.

Notice that the multiple zeta value ζ(s1, s2, . . . , sk) is nothing more than a special value of
the multiple polylogarithm Lis1,s2,...,sk :

ζ(s1, s2, . . . , sk) = Lis1,s2,...,sk(1, 1, . . . , 1)

Give a multiple zeta value ζ(s1, s2, . . . , sk), we call:
− The sum of its arguments s1 + s2 + · · ·+ sk the weight, and
− The number of its arguments k the depth.

3.2 Relations and Transcendence
Much of the interest and work in MZVs concerns finding an proving identities between them, to
understand all the relations betweem MZVs. Of particular interest are identities which give a
MZV as a polynomial in single (Riemann) zeta values.

As an example of the sort of identities which arise when studying MZVs, we have Euler’s
famous identity:

ζ(1, 2) = ζ(3)
which is but the first instance of a result called duality of MZVs.

But we have plenty of other identities, like the Zagier-Broadhurst evaluation [Example 2.2
and Section 11 in 6]:

ζ({1, 3}n) = 1
2n+ 1

π4n

(4n+ 1)! = 1
2n+ 1ζ(22n)

where here {1, 3}n is short-hand for the string {1, 3, 1, 3, . . . , 1, 3}, with n copies of 1, 3. Similarly
22n, which should be more properly written {2}2n, is short-hand for {2, 2, . . . , 2}, with n copies
of 2.

And the Gangl-Kaneko-Zagier family of identities between DZV, which arise form a connection
to modular forms, [19]. The first identity in this family is:

28ζ(3, 9) + 150ζ(5, 7) + 168ζ(7, 5) = 5197
691 ζ(12)

which occurs at k = 12, when there is a non-trivial cusp form of weight k on Γ1.

As may be noticeable in the above examples, all known relations between MZVs break up
into homogeneous pieces: the relations are between MZVs of the same weight. Conjecturally, all
relations between MZVs are homogeneous, and so the vector space of MZVs is in fact weight
graded. The Direct Sum Conjecture in [17] is essentially states:
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Conjecture 3.1 (Direct Sum Conjecture). When regarded as a Q-vector space, the space of MZVs
is the direct sum of the subspaces Zk of MZVs of weight k, so that all relations are homogeneous
with respect to weight.

The irrationality, transcendence and linear independence properties of these numbers are still
very mysterious. Thanks to Euler we know that ζ(2k) ∈ π2kQ, so that all even zetas are irrational
and algebraically dependent. Moreover, since π is transcendental, they are linearly independent,
but that’s about all we know.

The only other explicit result on irrationality of MZVs is due to Apéry, as recently as 1978,
when he proved that ζ(3) is irrational [2]. No one can even prove that ζ(5) is irrational, and aside
from some curious non-explicit results like one of ζ(5), ζ(7), ζ(9) and ζ(11) is irrational, as are
infinitely many ζ(odd) [37], little more is known. The question of proving ζ(5) and ζ(3) are even
linearly independent, i.e. ζ(5)/ζ(3) is irrational, seems hopelessly out of reach.
Conjecture 3.2 (Algebraic Independence [Conjecture 1 in 46]). The numbers π, ζ(3), ζ(5), ζ(7),
ζ(9), . . ., are algebraically independent over Q.

Following extensive numerical computations, searching for linear relations between MZVs,
Zagier found numerically that the dimension of the space Zk of MZVs of weight k is given by:

k 2 3 4 5 6 7 8 9 10 11 12
dimQZk 1 1 1 2 2 3 4 5 7 9 12

This leads to the general conjecture [Section 9 in 42] that dimQZk is given by the coefficient of xk
in the expansion of 1

1−x2−x3 , or equivalently by dk, where dk is defined by the recurrence relation:{
dk = dk−2 + dk−3 with
d2 = d3 = d4 = 1

Conjecture 3.3 (Dimension Conjecture). The dimension of the space Zk of MZVs of weight k is
given by dk, satisfying the recurrence dk = dk−2 + dk−3 with initial conditions d2 = d3 = d4 = 1.

This recurrence relating weight k MZVs to weight k− 2 and weight k− 3 in turn lead Hoffman
to propose a candidate basis for the space Zk might be given by ζ(w), where the word w is of
weight k and satisfies w ∈ {2, 3}×. That is a basis might consist of zetas where the arguments
are 2’s and 3’s only, [Conjecture C in 30].
Conjecture 3.4 (Basis Conjecture). A basis for the space Zk is given by the Hoffman elements
ζ(n1, . . . , nr), where n1, . . . , nr ∈ {2, 3}, with weight k.

Of course these numerical computations in no way establish any bound on the dimension.
Any numerical relations found agree only to the precision each side is calculated, they may differ
when computed to higher precision. Lack of a numerical relation just means there any relation
which holds has rational factors whose denominators are larger than the working precision, and
so not identifiable.

It has since been prove, by various authors such as Goncharov [23], Terasoma [38] and Brown
[8], that the upper bound dimQZk ≤ dk indeed holds. It is also known from Brown’s work that
the Hoffman elements, ζ(words in 2’s and 3’s of weight k), do span the space of MZVs. I can
sketch some ideas from one proof of this which uses Brown’s motivic MZVs, to be introduced
later.

The reverse inequality is much harder to tackle. We don’t even have a single proven instance
where dimQZk > 1. Nobody seriously entertains the notation that dimQZk = 1, but for all
we know the MZVs of weight k are all rational multiples of ζ(k), with immensely complicated
rational factors we haven’t identified yet.
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3.3 Algebraic Structure of MZVs and the Standard Relations
Using the point of view that MZVs are special values of the multiple polylogarithm, and using the
integral representation of the multiple polylogarithm, we obtain the Kontsevich representation of
an MZV:

ζ(n1, n2, . . . , nk) = (−1)kI(0; 10n1−1 10n2−1 · · · 10nk−1; 1)

This motivates encoding an MZV ζ(n1, n2, . . . , nk) as a word yxn1−1yxn2−1 · · · yxnk−1 in the
non-commutative polynomial ring Q〈x, y〉, as in [28] from which the following comes. Such a
word corresponds to a convergent MZV if and only if it begins with y and ends in x, these are
the admissible words. Denote by H0 the vector space of admissible words, we then view ζ as a
Q-linear map ζ : H0 → R. This encoding puts MZVs on much more algebraic footing, and allows
very elegant statements of relations.

With this we can formulate the first family of relations.

Duality: Define the antiautomorphism τ : Q〈x, y〉 → Q〈x, y〉 by τ(x) = y, and τ(y) = x. This
then simultaneously reverses a word and interchanges x ↔ y. Notice that this preserves the
admissibility of words. The duality theorem then states:

ζ(w) = ζ(τ(w))

for any admissible word w ∈ H0.

For w = yxn1−1yxn2−1 · · · yxnk−1, this is essentially proven by considering the integral
representation:

ζ(w) = (−1)kI(0; 10n1−1 10n2−1 · · · 10nk−1; 1)

Then apply the change of variables t′i = 1− ti to the iterated integral, to arrive at:

= (−1)k
′
I(0; 1nk−10 1nk−1−10 · · · 1n1−10; 1)

= ζ(τ(w))

since the word has been reversed, and had 0↔ 1 interchanged.

From this one gets a proof of Euler’s identity. Consider ζ(3). We have 3 is encoded by w = yx2.
But τ(w) = y2x, which encodes {1, 2}. So ζ(3) = ζ(1, 2).

Without this algebraic encoding of MZVs, formulating the statement of duality is a much
more awkward prospect. The integral representation of MZVs makes the proof almost trivial.

Shuffle product: We may find the product of two MZVs by multiplying their integral
representations. We know that iterated integrals multiply by the shuffle product, so we can define
a shuffle product on Q〈x, y〉, which reflects this. The shuffle product � is computed recursively
by:
− For any word w, 1� w = w� 1 = w, where 1 is the empty word.
− For any words w1, w2, and symbols a, b ∈ {x, y}:

aw1 � bw2 = a(w1 � bw2) + b(aw1 � w2)

This endows (Q〈x, y〉,�) with the structure of a commutative algebra. The fact that iterated
integrals multiply with the �-product says that ζ : (H0,�)→ (R, ·) is a homomorphism, meaning:

ζ(w1)ζ(w2) = ζ(w1 � w2)
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This gives us another family of relations between MZVs.

For example, ζ(2) = ζ(yx). We have:

ζ(2)ζ(2) = ζ(yx)ζ(yx) = ζ(yx� yx)

We readily compute the shuffle product to be 2 · yxyx+ 4 · yyxx, so that:

ζ(yx� yx) = ζ(2 · yxyx+ 4 · yyxx) = 2ζ(yxyx) + 4ζ(yyxx) = 2ζ(2, 2) + 4ζ(1, 3)

giving:
ζ(2)ζ(2) = 2ζ(2, 2) + 4ζ(1, 3)

Stuffle product: We can also multiply MZVs by multiplying their series representations. The
product of two such series is a sum of series where the indices of summation are taken in all
possible ways compatible with the original indices.

For example:

ζ(2)ζ(2) =
∑
n>0

1
n2

∑
m>0

1
m2

=
∑

n>m>0

1
m2n2 +

∑
m>n>0

1
n2m2 +

∑
n=m>0

1
n2m2

= ζ(2, 2) + ζ(2, 2) + ζ(4)
= 2ζ(2, 2) + ζ(4)

This is reflected in the stuffle product on Q〈x, y〉. The stuffle product ∗ is computed recursively
by:
− For any word w, 1 ∗ w = w ∗ 1 = w,
− For any word w, and any integer n ≥ 1:

xn ∗ w = w ∗ xn = wxn

− For any words w1, w2, and integers p, q ≥ 0:

yxpw1 ∗ yxqw2 = yxp(w1 ∗ yxqw2) + yxq(yxpw1 ∗ w2) + yxp+q+1(w1 ∗ w2)

This last requirement reflects the fact that when multiplying series, the argument strings of
the MZVs are shuffled in all possible ways (the first two terms), and that two arguments can be
stuffed into the same slot (the third term).

This endows (Q〈x, y〉, ∗) with a different commutative algebra structure. The fact that these
series multiply with ∗-product says that ζ : (H0, ∗)→ (R, ·) is a homomorphism, meaning:

ζ(w1)ζ(w2) = ζ(w1 ∗ w2)

This is a third family of relations between MZVs.

(Regularised) Double Shuffle: We have two distinct ways of multiplying MZVs: they cry
out to be compared. The two multiplications above give us quadratic relations between MZVs,
but when comparing the results, we now get linear relations between MZVs.
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For example, with the two different expressions for ζ(2)ζ(2) above:

ζ(2)ζ(2) = 2ζ(2, 2) + 4ζ(1, 3)
= 2ζ(2, 2) + ζ(4)

we deduce:
2ζ(2, 2) + 4ζ(1, 3) = 2ζ(2, 2) + ζ(4) =⇒ 4ζ(1, 3) = ζ(4)

More generally we have the standard family of linear relations:

ζ(w1 ∗ w2 − w1 � w2) = 0

for any w1, w2 ∈ H0.
Unfortunately this family of relations is known to be insufficient for generating all linear

relations between MZVs. For this reason we introduce a formal symbol ζ(1) for the divergent
MZV, and extend the map ζ to certain non-admissible words. Comparing shuffle and stuffle
here leads to all divergent terms (formally) cancelling, and new linear relations appearing. The
cancellation happens in such a way as to give valid results.

For example:

ζ(2)ζ(1) = ζ(2 ∗ 1) = ζ(2, 1) + ζ(1, 2) + ζ(3) and
ζ(2)ζ(1) = ζ(yx� y) = ζ(yxy + 2 · yyx) = ζ(2, 1) + 2ζ(1, 2)

thus:
ζ(2, 1) + ζ(1, 2) + ζ(3) = ζ(2, 1) + 2ζ(1, 2) =⇒ ζ(3) = ζ(1, 2)

giving another proof of Euler’s identity.
Conjecturally, all relations between MZVs come from this regularised comparison of shuffle

and stuffle. Notice that all relations arising in this way are necessarily homogeneous. Zudilin
phrases this as:

Conjecture 3.5 (MZV Relations [Conjecture 2 in 46]).

ker ζ = {u� v − u ∗ v | u ∈ H1, v ∈ H0}

where H1 := Q1 + yQ〈x, y〉, corresponding to the inclusion of words not ending in x, which equate
to divergent MZVs ζ(n1, n2, . . . , nk) with nk = 1.

3.4 Motivic Multiple Zeta Values
We have already encountered Goncharovs motivic iterated integrals. If we have known about
MZVs at this point, we could have defined his version of motivic MZVs. We would take:

ζM(n1, n2, . . . , nk) := (−1)kIM(0; 10n1−1 10n2−1 · · · 10nk−1; 1)

in analogy with the Kontsevich integral representation.
On the motivic level questions about the linear independence of the motivic elements ζM(2k+1)

become trivial. Indeed, since A•(Q) is weight graded, and the elements ζM(2k + 1) lie in
components of different degree, they are linearly independent! Similarly for the question of
whether all relations are homogeneous. This is what I intimated earlier when saying the motivic
framework eliminates transcendence problems of classical iterated integrals.

One unsatisfactory aspect of Goncharov’s motivic MZVs comes from the value of ζM(2k).
Since (2πi)−2kζ(2k) ∈ Q by Euler, Goncharov says that we have ζM(2k) = 0. Brown shows how
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these can be further lifted in such a way that ζm(2) is non-zero. Details for this section are found
in [8]

For parameters ai ∈ {0, 1}, the motives corresponding to Goncharov’s motivic iterated integrals
IM(a0; a1, . . . , an; an+1) are unramified over Z, so they lie in AMT := A•(Q). Introduce a trivial
comodule over AMT defined by:

HMT + := AMT ⊗Q Q[f2]

where f2 is taken to be of degree 2. This will correspond to the non-zero lifting of ζM(2).
Brown proves that there is a sub-Hopf algebra A of AMT , and a graded comodule H over A

satisfying the following properties:
It is spanned by the motivic iterated integrals:

Im(a0; a1, . . . , an, an+1) ∈ Hn
with ai ∈ {0, 1}, and satisfying the standard properties of iterated integrals given in subsection 2.4.

There is a period map:

per : H → R
Im(a0; a1, . . . , an; an+1) 7→ I(a0; a1, . . . , an; an+1)

which is a ring homomorphism, so motivic relations descend to classical iterated integrals.
There is a non-canonical isomorphism:

H ∼= A⊗Q Q[ζm(2)]

and an embedding of algebra-comodules H ↪→ HMT + which sends ζm(2) to f2. Here ζm(2) :=
−Im(0; 10; 1), and is non-zero in this incarnation. Goncharov’s motivic MZVs are recovered by
the quotient map H → A killing ζm(2). Brown denotes the image of Im under this quotient by
Ia, and similarly for motivic MZVs.

On H we get a coaction ∆: H → A ⊗Q H, which is computed by the same formula as
Goncharov’s coproduct, with the factors swapped:

∆Im(a0; a1, . . . , an; an+1) =∑
0<i0<i1<...<ik<ik+1=n+1

(
k∏
p=0

Ia(aip ; aip+1, . . . , aip+1−1; aip+1)
)
⊗ Im(a0; ai1 , . . . , aik ; an+1)

To simplify the formula for the coaction, to make calculations more tractable, Brown wants
to consider an infinitesimal version of it. Consider projection of A>0 to the Lie algebra of
indecomposables:

π : A>0 → L := A>0

A>0A>0

The image of an element Im under the projection to L is denoted by Brown as IL.
For each odd r ≥ 3, he defines the operator:

Dr : HN
∆r,N−r−−−−−→ Ar ⊗Q HN−r

π⊗id−−−→ Lr ⊗Q HN−r
Its action on the motivic iterated integral Im(a0; a1, . . . , an; an+1) is given explicitly by:

DrI
m(a0; a1, . . . , an; an+1) =

n−r∑
p=0

IL(ap; ap+1, . . . , ap+r; ap+r+1)⊗ Im(a0; a1, . . . , ap, ap+1, . . . , an; an+1)
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This can be interpreted as cutting off one segment of length r from a semicircular polygon, rather
than all possible combinations of segments. The sequences (ap; ap+1, . . . , ap+r; ap+r+1) are called
subsequences and (a0; a1, . . . , ap, ap+r, . . . , an; an+1) are the quotient sequences.

The operators Dr, for r odd, form an integral part of an algorithm which can decompose a
motivic MZV into a chosen basis, [9]. The operator Dr is used to extract the coefficient of ζm(r)
as a polynomial in motivic MZVs. By decomposing all the sub and quotient sequences of lower
weight in this basis, one can extract the coefficients of each basis element, and decompose the
given motivic MZV.

The upshot of this framework is that if all the operators Dr, for odd r < N vanish on a given
combination of motivic MZVs of weight N , then this combination is a rational multiple of ζm(N),
[Theorem 3.3 in 8]. These results descend to classical MZVs using the period map; this gives us
some very powerful and simple combinatorial tools for establishing results about MZVs.

This can be seen something of a Galois theory for transcendental numbers – an elements
behaviour under certain operators (0 under theD2k+1 verses invariance under field automorphisms)
gives information about what form it has (rational multiple of ζm(N) verses lying in the base
field). The operators Dr also exist for even r, but play no clear role in this framework. Might
they somehow be used to extract the coefficient ζm(N), which otherwise remains elusive?

3.5 Dimension of MZVs and the Hoffman Elements
One of the first significant applications of Brown’s motivic MZV framework is to give an alternative
proof that the dimension of the space of MZV of weight k is bounded above by dk, and that the
Hoffman elements ζ(2’s and 3’s) span this space. Complete details are found in [8, 9].

The following is the combination of Lemma 3.3 and Remark 3.7 in [9]. By the period map,
and by construction of H ↪→ HMT + , we have:

dimQZk ≤ dimQHk ≤ dimQHMT+
k

By computing the Poincaré series we will determine dimQHMT +
k = dk. Brown says that AMT is

non-canonically isomorphic to the cofree Hopf algebra on cogenerators f2r+1 in degree 2r+ 1 ≥ 3,
so that the comodule has the following structure:

HMT + ∼= Q〈f3, f5, . . . , f2r+1, . . .〉 ⊗Q Q[f2]

The Poincaré series for Q〈f3, f5, . . .〉 is given by:

1
1− t3 − t5 − · · · − t2r+1 − · · ·

= 1− t2

1− t2 − t3

multiplying this by the Poincaré series for Q[f2], which is 1
1−t2 gives the Poincaré series for HMT +

as: ∑
k≥1

dimQ

(
HMT +
k

)
tk = 1

1− t2
1− t2

1− t2 − t3 = 1
1− t2 − t3

and dimQHMT +
k = dk as required

So the upper bound dimQZk ≤ dk of Zagier’s dimension conjecture holds.

In considering the elements ζm(2’s and 3’s), Brown is able to show they are linearly indepen-
dent, [Theorem 7.4 in 8]. Their number in weight k is dk, so gives the lower bound dimQHk ≥ dk
on the space of motivic iterated integrals of weight k. Overall this establishes an isomorphism
H ∼= HMT + , not just an embedding.
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With this he settles one conjecture about the structure of the motivic Galois group GMT ′ of
MT ′(Z). HereMT ′(Z) is the full Tannakian subcategory ofMT (Z) generated by the motivic
fundamental group of P1\{0, 1,∞}, andMT (Z) is the category of mixed Tate motives unramified
over Z. The conjecture is that the map GMT � GMT ′ is an isomorphism, where GMT is the
motivic Galois group ofMT (Z). A further consequence of this is that the periods ofMT (Z), of
mixed Tate motives unramified over Z, are Q[ 1

2πi ]-linear combinations of MZVs.
The linear independence of ζm(2’s and 3’s), and the number dkof them in each weight k,

means they form a basis for the space of motivic MZVs of weight k. So every motivic MZV can
be written as a unique Q-linear combination of these motivic Hoffman elements. Applying the
period map shows that the elements Hoffman elements ζ(2’s and 3’s) span the space of classical
MZVs, confirming one part of Hoffmans proposed basis conjecture.

Brown’s proof that ζm(2’s and 3’s) are linear independent works inductively on the level,
defined to be the number of 3s in the word w of the argument of ζm. The base case is provided
by the fact that all Hoffman MZVs of level 0, i.e. the elements ζm(2n), are linearly independent.
The induction assumption is that all Hoffman MZVs of level < ` are linearly independent. Brown
shows how a relation between Hoffman MZVs of level ` must imply a relation between Hoffman
MZVs of strictly smaller level, which contradicts the induction assumption.

Establishing this relies heavily on an explicit computation of ζ(2, . . . , 2, 3, 2, . . . , 2) by Zagier
[43], and the 2-adic properties of coefficients in this expansion.

3.6 Results using Motivic MZVs
In Equation 18 of [4], Borwein, Bradley, and Broadhurst conjecture that the following MZV is an
(explicit) rational multiple of πwt:

ζ({2m, 1, 2m, 3}n, 2m) = 1
2n+ 1

πwt

(wt + 1)!

where I write wt to mean the weight of the MZV, here (4 + 4m)n+ 2m.
Within Brown’s motivic MZV framework it is surprisingly easy for me to establish the non-

explicit version of this result: it is some rational multiple of πwt. Although this comes with the
caveat that the rational factor is not determined explicitly.

Proposition 3.6. The MZV ζ({2m, 1, 2m, 3}n, 2m) is a rational multiple of πwt.

Proof (Sketch). First lift this to the motivic level, write out the binary string encoding this
MZV, and notice how it can be written in a very symmetrical way as:

(01)m+1 | (10)m+1 | · · · | (01)m+1

where the bars | are purely to aid in seeing the pattern.
We want to show that D2k+1 vanishes completely on this iterated integral. The terms of

D2k+1 correspond to ways of cutting out a subsequence of length 2k + 1 from this string.
A non-trivial subsequence of odd length will lie in an even number of blocks, otherwise its

start and end digit are equal, and it vanishes. By reflecting this sequence of blocks we define
another subsequence of the string, which is the reverse of this subsequence. Reflecting is an
involution on subsequences so we establish a pairing of subsequences.

The quotient sequences for these two subsequences agree, and by reversal of paths the iterated
integrals defined by the subsequences are opposites. Hence these two terms cancel pairwise in
D2k+1.
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With this understood, it is really no more difficult to prove the generalisation that one may
insert symmetrically all permutations of fixed blocks 2a0 , 2a1 , . . . , 2a2n into the gaps of the string
{1, 3}n, and obtain a rational multiple of πwt.

Proposition 3.7 (Symmetric Insertion). Fix 2n+ 1 non-negative integers a0, a1, . . . , a2n ≥ 0,
and define:

Z(a0, a1, . . . , a2n) := ζ(2a0 , 1, 2a1 , 3, 2a2 , . . . , 1, 2a2n−1 , 3, 2a2n)

obtained by inserting the block 2ai into the i-th gap of the of the string {1, 3}n. Then:∑
σ∈S2n+1

Z(aσ(0), aσ(1), . . . , aσ(2n)) ∈ πwtQ

where S2n+1 is the symmetric group on 2n+ 1 letters.

Proof. In this case we get strings like (01)a0+1 | (10)a1+1 | · · · | (01)a2n+1, and all permutations.
The reversing blocks procedure again sets up a pairwise cancellation between terms of D2k+1, an
the result follows.

More generally, with the notation Z from the proposition above, the cyclic insertion conjecture
formulated as Conjecture 1 in [5] by Borwein et al. proposes that:

∑
r∈C2n+1

Z(ar(0), ar(1), . . . , ar(2n+1)) = πwt

(wt + 1)!

independently of the number of blocks or their individual sizes. Here C2n+1 is the cyclic group
of order 2n + 1, and it acts naturally by cyclicly shifting the indices. So only inserting cyclic
rotations of the blocks should be sufficient to get a rational multiple of πwt.

The nearest result to this at the moment seems to be the Bowman-Bradley theorem which
establishes an exotic shuffle relation between ζ(2m) and ζ({1, 3}n):

Theorem 3.8 (Bowman-Bradley [Theorem 5.1 in 7]).

ζ(2m � {1, 3}n) =
∑

a0+a1+···+a2n=m
a0,a1,...,a2n≥0

Z(a0, a1, . . . , a2n) =
(

2n+m

m

)
1

2n+ 1
πwt

(wt + 1)!

This says that one can insert all compositions (which may include 0 summands) of blocks
with total size m to get a rational multiple of πwt.

Notice that since any cyclic rotation of a composition a0 + a1 + · · ·+ a2n = m still gives a
composition of m, the cyclic insertion conjecture would imply this sum breaks up into πwt-rational
subsums over cyclic rotations of fixed compositions. The symmetric insertion result above tells us,
at the first stage, this sum does indeed break up into πwt-rational subsums over all permutations
of fixed compositions.

A proof of a non-explicit cyclic insertion conjecture does not yet come easily with motivic
MZVs – the binary encodings are not symmetrical enough to allow the sort of pairwise cancellation
used significantly in the earlier proofs. Nevertheless we can try and see what happens.
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Example 3.9. Looking at the example ζ(1, 3, 1, 2, 3, 2) plus cyclic shifts. This gives the motivic
iterated integrals

Im(01 | 10 | 01 | 1010 | 0101)
Im(01 | 10 | 0101 | 1010 | 01)
Im(01 | 1010 | 0101 | 10 | 01)
Im(0101 | 1010 | 01 | 10 | 01)
Im(0101 | 10 | 01 | 10 | 0101)

Computing D3, and killing all the terms which obviously cancel, and making the appropriate
simplifications, we are left with:

6ζL(3)⊗ (ζm(3, 2, 1, 3)− ζm(3, 1, 3, 2) + ζm(1, 2, 3, 3)− ζm(1, 3, 3, 2))

which does not obviously cancel.
Applying the period map, and numerically evaluating the right hand side, we find:

ζ(3, 2, 1, 3)− ζ(3, 1, 3, 2) + ζ(1, 2, 3, 3)− ζ(1, 3, 3, 2) ≈ 0

to several hundred decimal places. So on the motivic level this conceivably could be exactly 0,
however I don’t see this yet.

Similar problems happen for the other derivations Dr, and in other cases – the terms don’t all
cancel cleanly. But applying the period map seems always to lead to a result on classical MZVs
which is 0, consistent with the operators Dr vanishing on the motivic MZVs. By keeping careful
track of where the terms in these results come from, and how they seem to cancel, it appears a if
the terms from a fixed position in a cyclicly shifted block sum to zero. This leads me to propose:

Conjecture 3.10 (Dihedral Insertion). Fix 2n non-negative integers a1, a2, . . . , a2n.
Let Xi(a1, a2, . . . , a2n) be the MZV obtained by replacing the i-th 1 of the string {1, 3}n, with

2a1 , and cyclicly inserting the other 2ai in the gaps to the right. Let Yi(a1, a2, . . . , a2n) be the
MZV obtained by replacing the i-th 1 with 2a1 , and inserting the rest cyclicly in the gaps to the
left.

Then:
n∑
i=1

Xi(a1, . . . , a2n)− Yi(a1, . . . , a2n) ?= 0

The name comes from this results similarity to cyclic insertion, but for the additional sign
which arises when moving in reverse.

For example, with n = 2, and a1 = a, a2 = b, a3 = c, a4 = d, we could construct:

X1(a, b, c, d) = ζ(2a, 3, 2b, 1, 2c, 3, 2d)
Y1(a, b, c, d) = ζ(2a, 3, 2d, 1, 2c, 3, 2b)
X2(a, b, c, d) = ζ(2c, 1, 2d, 3,2a, 3, 2b)
Y2(a, b, c, d) = ζ(2c, 1, 2b, 3,2a, 3, 2d)

and get:

ζ(2a, 3, 2b, 1, 2c, 3, 2d)− ζ(2a, 3, 2d, 1, 2c, 3, 2b)

+ ζ(2c, 1, 2d, 3, 2a, 3, 2b)− ζ(2c, 1, 2b, 3, 2a, 3, 2d) ?= 0

with the previous result being a = b = c = 0, d = 1.
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3.7 Motivic DZVs and Eisenstein Series
As another example of how powerful the combinatorial tools of motivic MZVs are, I can derive a
non-explicit version of the Gangl-Kaneko-Zagier identities between DZVs simply by considering
the action of D2k+1 and using some linear algebra.

Consider the odd-odd motivic DZV:

ζm(2a+ 1, 2b+ 1) := Im(0; 102a 102b; 1)

By looking at the result cutting out a subsequence of length 2k + 1 in the various cases k < a,
k = a, and k > a, and similarly for b, we find that generally D2k+1ζ

m(2a+ 1, 2b+ 1) is given by:

D2k+1ζ
m(2a+ 1, 2b+ 1) =

(
−δka +

(
2k
2a

)
−
(

2k
2b

))
ζL(2k + 1)⊗ ζm(wt− 2k + 1)

where the binomial coefficient
(
x
y

)
is 0 if y > x: there are no ways to choose more than x items

from x items.
Consider a linear combination of all the odd-odd DVZs of fixed weight. For illustrative

purposes, I’ll take weight 12. Then we have:

aζ(1, 11) + bζ(3, 9) + cζ(5, 7) + dζ(7, 5) + eζ(9, 3)

For this to be a rational multiple of ζ(12) we would want all the D2k+1 to vanish on this linear
combination. That D9 vanishes, means:

0 = D9(aζ(1, 11) + bζ(3, 9) + cζ(5, 7) + dζ(7, 5) + eζ(9, 3))
= aD9ζ(1, 11) + bD9ζ(3, 9) = cD9ζ(5, 7) + dD9ζ(7, 5) + eD9ζ(9, 3)

and using the formula for the derivations found above, we get:

= (−a− 27b− 42c+ 42d+ 28e)ζL(9)⊗ ζm(5)

So that the coefficient −a− 27b− 42c+ 42d+ 28e should vanish.
A similar calculation for each operator D2k+1, on this linear combination, leads to the following

system of equations: 
−1 0 0 0 1
−1 −6 0 1 6
−1 −15 −14 15 15
−1 −27 −42 42 28



a
b
c
d
e

 = 0

The relations we want lie in the kernel of this matrix M , so we want to find its nullspace.
Apply some linear algebra, and one finds a basis for the kernel is given by:

v0 =


1
5
63
28
0
1

 , v1 =


0
1
625
28
1
0


We then reinterpret these vectors as non-trivial relations among the ζ(odd, odd), to find the

following linear combinations are rational multiples of ζ(12):

ζ(1, 11) + 5
6ζ(3, 9) + 3

28ζ(5, 7) + ζ(9, 3) and
1
6ζ(3, 9) + 25

28ζ(5, 7) + ζ(7, 5)
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Scaling up in the second line we immediately recover the non-explicit version of the Gangl-
Kaneko-Zagier identity for weight 12 DZVs:

28ζ(3, 9) + 150ζ(5, 7) + 168ζ(7, 5) ∈ ζ(12)Q

Curiously this matrix appears (nearly) as a submatrix of the matrix Q(1)
k from [31], the entries

of which come from part of the coefficients of the Fourier series for the double Eisenstein series:

Gij(τ) =
∑

m,n∈Z+τZ
m�n�0

1
minj

The matrix (Q(1)
k )> does not include the column of −1’s corresponding to ζ(1, 11), but the other

columns do correspond to the action of the operators D2k+1 on the ζ(even, even). One knows
that the sum of all DZVs of weight N is just ζ(N), so dropping ζ(1, 11) is no loss. Then finding
the nullspace of (Q(1)

k )> has the effect of finding all linear relations between DZVs, rather than
just picking out this ‘exceptional’ relation.

Facts about the rank of this matrix M , or rather its (Q(1)
k )> incarnation, and hence results

about the number independent relations between DZVs, follow from the theory of periods of
SL2(Z). But why these exact coefficients should appear from two completely different sources is
unclear.

4 Conclusion
In this report we have introduced the polylogarithm and multiple polylogarithm functions. We
have explored some properties of these functions, their special values and the functional equations
they satisfy. We have seen the fundamental role polylogarithms play in connection with the
Dedekind zeta function: Zagier’s conjecture proposes a relation between the value of the Dedekind
zeta function at n and the order n polylogarithm.

We have looked at the properties of iterated integrals, and how they may be used to encode
values of the multiple polylogarithm. Lifting to the motivic level, we see how we gain new
algebraic structures, and eliminate transcendence problems. We have introduced the polygon
algebra, which, through its connection to iterated integrals and algebraic cycles, captures many of
the combinatorial properties of multiple polylogarithms. I have shown how the polygon algebra
admits other algebraic structures, such as an operadic composition and a VV-differential, and
highlighted the similarities these structures share with other objects. The operadic composition
of R-deco polygons looks very much like the composition in the mosaic operad connected with
tessellations of moduli spaces. The collapsing of VV-arrows in the VV-differential is reminiscent of
terms in the coproduct on dissection diagrams and dissection polylogarithms. Lastly I exhibited
suggestions for other avenues of exploration, relating polygons to moduli spaces and maximally
degenerate curves.

Then we turned to certain special values of the multiple polylogarithm, the multiple zeta
values. We have seen that a great deal of the interest surrounding MZVs stems from the way
very simple, basic questions about their transcendence properties and algebraic structure are
exceptionally difficult to answer, except conjecturally. Questions even about the irrationality of
ζ(odd) remain almost completely unanswered. We have explained how the recent work of Brown
has provided new tools to answer questions about MZVs. With it he re-proves a bound on the
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dimension of the space of MZVs, and obtains a proof that the Hoffman elements ζ(2’s and 3’s)
span the space of MZVs.

We have then used some of the combinatorial tools provided by Brown’s work to investigate
relations between MZVs. I have used the infinitesimal coproduct operators Dr, which form the
basis for Brown’s motivic MZV decomposition algorithm, to re-establish the non-explicit form of
the Gangl-Kaneko-Zagier identities. During this computation I have noticed how the coproduct
structure on DZVs curiously recovers certain coefficients which arise in the Fourier series of the
double Eisenstein series. I have also used this coproduct to prove a certain MZV, conjectured by
Borwein, Bradley, and Broadhurst, is indeed a non-explicit rational multiple of a power of π, and
generalised this proof to a symmetric insertion result, analogous to the cyclic insertion conjecture
of Borwein et al.
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