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Abstract. For a random partition, one of the most basic questions is: what can one expect about
the parts which arise? For example, what is the distribution of the parts of random partitions mod-
ulo N? Since most partitions contain a 1, and indeed many 1s arise as parts of a random partition,
it is natural to expect a skew towards 1 (modN). This is indeed the case. For instance, Kim, Kim,
and Lovejoy recently established “parity biases” showing how often one expects partitions to have
more odd than even parts. Here, we generalize their work to give asymptotics for biases (modN)
for partitions into distinct parts. The proofs rely on the Circle Method and give independently
useful techniques for analyzing the asymptotics of Nahm-type q-hypergeometric series.

1. Introduction and statement of results

The study of the distribution of parts in integer partitions has a long history. For instance, many
authors have studied counting functions for partitions with restrictions on the possible parts. Here,
we are interested in the relative numbers of parts which are in different congruence classes. As
most of the parts in most partitions tend to be small, for example, including many 1s and 2s, it
is natural to expect that the parts are not equidistributed modulo N ∈ N≥2. For instance, Kim,
Kim, and Lovejoy [12] showed the following parity bias for partitions modulo 2, where po(n) (resp.
pe(n)) denotes the number of partitions of n with a majority of odd parts (resp. even parts):

po(n) > pe(n) for n 6= 2, lim
n→∞

po(n)

pe(n)
= 1 +

√
2. (1.1)

There are also biases for congruence classes modulo general N . A deep analysis of these was
given in three related papers by Dartyge, Sarkozy, and Szalay [6, 7, 8], who proved lower bounds
on biases for parts of partitions in congruence classes for positive proportions of partitions. This
was generalized by Beckwith and Mertens [3], who turned these results into asymptotic formulas.
Recently, the study of partition part biases for partitions into distinct parts was initiated by Kim,
Kim, and Lovejoy [12]. They conjectured an analogue of the inequality in (1.1) which was recently
proven in [2]. The goal of this paper is to refine these inequalities to precise, general, asymptotics.

For N, `, b ∈ N, the generating function for the number aN,`,b(n) of partitions into ` distinct parts
such that the size of each part is at least b and is congruent to b (modN) is given by

∑
n≥0

aN,`,b(n)qn =
q
N`(`−1)

2
+b`

(qN ; qN )`
.

Here (a; q)r :=
∏r−1
j=0(1− aqj) with r ∈ N0 ∪ {∞} is the usual q-Pochhammer symbol.

Let N ∈ N≥2, K ∈ N0, 1 ≤ α, β ≤ N , and α 6= β. Denote by d
[K]
α,β;N (n) the number of partitions

of n into distinct parts such that there are more parts of size congruent to α (modN) than parts of
size congruent to β (modN) and such that the size of all parts are greater than K. The generating
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function of d
[K]
α,β;N (n) is given by (throughout we use bold letters for vectors)

D[K]
α,β;N (q) :=

∑
n≥0

d
[K]
α,β;N (n)qn =

∑
n∈Sα,β

qN ·H(n)∏N
j=1 (qN ; qN )nj

, (1.2)

where
Sα,β :=

{
n = (n1, . . . , nN )T ∈ NN0 : nα > nβ

}
.

Moreover H : ZN → Q is given by

H(n) := 1
2n

Tn+ bTn, b :=
(

1
N −

1
2 ,

2
N −

1
2 , . . . , 1

2

)T
+ e

where
e = e[N,K] = (e1, . . . , eN )T :=

⌊
K
N

⌋
1 + (1, . . . , 1, 0, . . . , 0)T

is such that
∑

j ej = K and 1 := (1, . . . , 1)T ∈ ZN . Note that we have

N∑
j=1

bj = K + 1
2 . (1.3)

In this paper we investigate a generalized parity bias modulo N for partitions into distinct parts.
Namely, given two congruence classes α, β (modN), we consider the number of partitions of n into
distinct parts with more parts congruent to α (modN) than to β (modN), and vice versa. We
study the difference between these two counts, which has generating function∑

n≥0

(
d

[K]
α,β;N (n)− d[K]

β,α;N (n)
)
qn.

The case N = 2, α = 1, β = 2, and K = 0 corresponds to the parity bias problem for partitions
into distinct parts which Kim, Kim, and Lovejoy considered in [12] (the reader is also referred to
[5, 11] for related works on partition parity biases modulo N). Our main result is as follows.

Theorem 1.1. We have

d
[K]
α,β;N (n) =

eπ
√

n
3

2K+3 · 3
1
4NN−1n

3
4

×
∑

`∈(Z/NZ)N

NH(`)≡n (modN)

(
1 +

N2 − 2N [`α − `β]N + β − α+N (eβ − eα)

2 · 3
1
4

√
Nn

1
4

+O

(
1√
n

))

as n→∞, where [`]N denotes the smallest positive integer congruent to ` (modN).

Remark. Sums of the shape (1.2), i.e., sums over (partial) lattices of q raised to quadratic poly-
nomials divided by products of Pochhammer symbols, have been the subject of many recent works.
In particular, they are important in knot theory, algebraic K-theory, physics, and the intersections
of these subjects with quantum modular forms (see e.g. [4, 10, 13, 14], a more complete list of
references and such connections is given in [9]). They also arise (thought not always named “Nahm
sum”) in q-series and combinatorics, for example, in [1, 12]. Recently, Garoufalidis and Zagier [9]
investigated a general class of Nahm sums, but this does not allow us to study (1.2) particularly due
to more general subset of a lattice which we consider. Our analytic methods extend their methods,
and are analytically flexible. Thus, they may be more broadly useful in the study of such sums when
they arise in applications to combinatorics or knot theory.

If N = 2 or N ≥ 5, then we can further simplify the asymptotic formula. In particular, in this
case the asymptotic formula does not depend on the congruence class of n (modN).
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Theorem 1.2. Suppose that N = 2 or N ≥ 5. Then we have, as n→∞,

d
[K]
α,β;N (n) =

eπ
√

n
3

2K+3 · 3
1
4n

3
4

(
1 +
−N + β − α+N (eβ − eα)

2 · 3
1
4

√
Nn

1
4

+O

(
1√
n

))
.

Kim, Kim, and Lovejoy [12, Section 6] conjectured that for n ≥ 20 there are more partitions
into distinct parts with more odd parts than even parts than vice versa. The conjecture was first
proved [2] using combinatorial arguments, but an asymptotic formula for the parity bias had not
been found. Theorem 1.2 gives a new asymptotic formula for the parity bias as a corollary.

Corollary 1.3. We have, as n→∞,

d
[K]
1,2;2(n)− d[K]

2,1;2(n) =
(−1)Keπ

√
n
3

2K+3
√

6n

(
1 +O

(
n−

1
4

))
.

In particular, we have, as n→∞,

d
[K]
1,2;2(n)

d
[K]
2,1;2(n)

→ 1.

Remark. Corollary 1.3 answers Problem 6.1 of [2] on explicit inequalities between these quantities
(after a small correction). Problem 6.1 of [2] conjectured that for all n ≥ 14:d

[1]
1,2;2(n) > d

[1]
2,1;2(n) if n ≡ 0 (mod 2),

d
[1]
1,2;2(n) < d

[1]
2,1;2(n) if n ≡ 1 (mod 2).

While this conjecture is true for many small values, it does not hold in general. Corollary 1.3

provides a modified version, showing that d
[1]
1,2;2(n) < d

[1]
2,1;2(n) for n sufficiently large.

For N ∈ {3, 4}, the asymptotics of the parity bias can indeed depend on the residue classes
n (modN). We use the following corollary to Theorem 1.1 to illustrate this phenomenon.

Corollary 1.4. We have the asymptotic formulas, as n→∞,

d
[0]
1,2;3(n)− d[0]

2,1;3(n) =


e
π
√

n
3

n

(
1
24 +O

(
n−

1
4

))
if n ≡ 0 (mod 3) ,

e
π
√

n
3

n

(
1
6 +O

(
n−

1
4

))
if n ≡ 1 (mod 3) ,

e
π
√

n
3

n

(
− 1

12 +O
(
n−

1
4

))
if n ≡ 2 (mod 3) .

The main tool for the proof of Theorem 1.1 is the Circle Method. We briefly outline our strategy.
Firstly, we look at individual summands in (1.2), and derive two different asymptotic series for them
as q approaches a root of unity. The first such series is obtained by considering the summands as
holomorphic functions in z (q = e−z), and deriving an asymptotic expansion as z → 0 from the
right half-plane. Unfortunately, the asymptotic expansion only holds for a narrow cone around the
positive real line and is insufficient for the computation of the major arc contribution. Thus we
derive a second asymptotic series by treating the real and imaginary parts of z separately. This
asymptotic series is no longer holomorphic in z, but holds in a sufficiently large region. To derive

an asymptotic expansion for D[K]
α,β;N (q), we sum over the asymptotic series for the summands in

(1.2), ignoring the summands with negligible contribution. An asymptotic expansion for d
[K]
α,β;N (n)

is then obtained using the Circle Method. Theorem 1.1 is derived by explicit evaluation of the first

two terms in the asymptotic expansion for d
[K]
α,β;N (n).
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The paper is organized as follows. In Section 2, we give preliminaries on asymptotics, such as the
asymptotic formula for −Log((q; q)∞) and the Euler–Maclaurin summation formula. In Section 3,
we derive the two asymptotic expansions for summands appearing in (1.2). In Section 4, we prove

bounds for the terms we ignore in the derivation of the asymptotic expansion of D[K]
α,β;N (q), as well

as the minor arc contributions. In Section 5, we use the results obtained in previous sections to

derive asymptotic expansions for D[K]
α,β;N (q) and d

[K]
α,β;N (n). In Section 6, we evaluate the asymptotic

expansion of d
[K]
α,β;N (n) explicitly, and prove Theorems 1.1 and 1.2. In Section 7, we give numerical

examples illustrating the biases we prove.
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Notation

For the readers convenience we list the notation that is used in the paper. We always treat
N ∈ N≥2, K ∈ N0 and 1 ≤ α, β ≤ N , α 6= β as fixed parameters.

• For z ∈ C with Re(z) > 0, we write z = ε(1 + iy) with ε > 0 and y ∈ R, and q = e−z ∈ C.
• The constant λ is fixed, real, and satisfies −2

3 < λ < −1
2 .

• For ` ∈ Z, we write [`]N to denote the smallest positive integer congruent to ` (modN).
• We define the set Sα,β := {n = (n1, . . . , nN )T ∈ NN0 : nα > nβ}.
• We write ` = (`1, . . . , `N ) for an element in (Z/NZ)N . We always assume 0 ≤ `j < N .
• For ` = (`1, . . . , `N ) ∈ (Z/NZ)N , we define Sα,β;N,` := {n ∈ Sα,β : n ≡ ` (modN)}.
• We let Nε,λ := {n ∈ NN0 : n = log(2)

ε 1 + µ, |µ| ≤ ελ} and write µ = n− log(2)
ε 1.

• For n ∈ NN0 , we define u ∈ CN entrywise by nj = log(2)
z +

uj√
z
, giving a map n 7→ u. The bijective

image of Sα,β;N,` (resp. Nε,λ) under the map n 7→ u is denoted Tα,β;N,` (resp. Uε,λ). We also

define v ∈ CN entrywise by nj = log(2)
ε +

vj√
z
.

• The functions Cr, Λ, and Dr, are given as∑
r≥0

Cr(u)z
r
2 := exp(φ(u, z)), with φ(u, z) := −bTu

√
z − Nz

24
+

N∑
j=1

ξ

(
uj√
z
, z

)
,

where ξ(ν, z) = −
R−1∑
r=2

(
Br(−ν)− δr,2ν2

)
Li2−r

(
1

2

)
zr−1

r!
+O

(
zR−1

)
(R ∈ N),

Λ(y) := N

(
π2

6
− log(2)2(1 + iy)2

2
− Li2

(
2−(1+iy)

))
,

∑
r≥0

Dr(v, y)z
r
2 := exp(φ(v, z)), with φ(v, z) := −bTv

√
z − Nz

24
+

N∑
j=1

ξy

(
vj√
z
, z

)
,
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where ξy (ν, z) = −
R−1∑
r=2

(
Br (−ν)− δr,2ν2

)
Li2−r

(
2−(1+iy)

) zr−1

r!
+O

(
zR−1

)
(R ∈ N).

• The functions D[K]
α,β;N and D[K]

α,β;N,` are defined as

D[K]
α,β;N (q) :=

∑
n≥0

d
[K]
α,β;N (n)qn =

∑
n∈Sα,β

qN ·H(n)∏N
j=1 (qN ; qN )nj

,

D[K]
α,β;N,`(q) :=

∑
n∈Sα,β;N,`

qNH(n)∏N
j=1 (qN ; qN )nj

.

• The functions f
[K]
α,β;N,`, g

[K]
α,β;N,`, g

[K,1]
α,β;N,`, and g

[K,2]
α,β;N,` are given as

f
[K]
α,β;N,`(z) :=

∑
n∈Sα,β;N,`

e−NH(n)z∏N
j=1 (e−Nz; e−Nz)nj

, g
[K]
α,β;N,`(z) := f

[K]
α,β;N,`

( z
N

)
,

g
[K,1]
α,β;N,`(z) :=

∑
n∈Sα,β;N,`∩Nε,λ

e−H(n)z∏N
j=1 (e−z; e−z)nj

, g
[K,2]
α,β;N,`(z) :=

∑
n∈Sα,β;N,`\Nε,λ

e−H(n)z∏N
j=1 (e−z; e−z)nj

.

• For u ∈ CN , we let uα be the α-th entry of u, and u[1] be the remaining N − 1 entries. For
convenience, we write u = (u[1], uα). Analogously, we write µ[1] for the corresponding N − 1
entries of µ. For 1 ≤ c ≤ N , c 6= α, we let uc (resp. uα) be the c-th (resp. α-th) entry of u, and
u[2] for the remaining N − 2 entries. For convenience, we write u = (u[1], uα) = (u[2], uc, uα).

• For fixed ` ∈ (Z/NZ)N , the sets uα(u[1]), uc, and U[1] are defined as

uα
(
u[1]

)
:=
{
uβ + t

√
z : t ∈ [`α − `β]N +NN0

}
, uc :=

{
− log(2)√

z
+ t
√
z : t ∈ `c +NN0

}
,

U[1] :=

{
u[1] ∈

(
− log(2)√

z
+ R
√
z

)N−1

:
∣∣µ[1]

∣∣ ≤ ελ} .
• The functions Gj and Gj,α are given by

Gj(u) := e
π2N
12z Cj(u)e−u

Tu, Gj,α
(
u[1]

)
:=

∑
uα∈uα(u[1])

Gj
(
u[1], uα

)
.

• The coefficients E`,r, Vj,r and Wr are defined as, with R ∈ N,

g
[K,1]
α,β;N,`(z) =:

e
π2N
12z

2K+ 1
2π

N
2

R−1∑
r=0

E`,rz
r
2 + e

π2N
12ε O

(
εN(λ+ 1

2)+3R(λ+ 2
3)
)
,

∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) =: e
π2N
12z

R−1∑
r=−N

Vj,rz
r
2 +O

(
ε(λ+ 1

2)(3j+2N+R−1)+N+R
2
−1e

π2N
12ε

)
,

∑
uα∈uα(u[1])

Gj
(
u[1], uα

)
=:

1

N
√
z

∫ uβ+
√
z∞

uβ

Gj
(
u[1], uα

)
duα +

R−1∑
r=0

WrG
(r)
j

(
u[1], uβ

)
z
r
2

+O

(
ε(λ+ 1

2)(3j+R+1)+R−1
2 e

π2N
12ε

)
.
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2. Preliminaries

We first recall several special functions. For s ∈ C, the polylogarithm is given by

Lis(w) :=
∑
n≥1

wn

ns
, |w| < 1.

For w ∈ (0, 1), define the Rogers dilogarithm function (shifted by a constant so that L(1) = 0)

L(w) := Li2(w) +
1

2
log(w) log(1− w)− π2

6
.

It is well-known (see [20, p.6]) that

L

(
1

2

)
= −π

2

12
. (2.1)

Let Br(x) denote the r-th Bernoulli polynomial defined via the generating function

text

et − 1
=:

∞∑
n=0

Bn(x)
tn

n!
.

The r-th Bernoulli number is given by Br := Br(0).
We use �,�, and � to compare the size of quantities, without any assumption on their signs

or arguments unless stated otherwise; e.g., for y ∈ R, y � 1 means −C ≤ y ≤ C for some C > 0.
We first give a basic estimate for (q; q)−1

∞ ; the proof of the following lemma is straightforward.

Lemma 2.1. Let ε > 0 and z := ε(1 + iy). Suppose y � ε−
1
2

+δ for some δ > 0. Then we have1

−Log((q, q)∞) =
π2

6z
+

1

2
Log

( z
2π

)
− z

24
+ E ,

as z → 0, where the error term E satisfies E � zL for all L ∈ N.

The following lemma is a special case of Lemma 2.1 of [9].

Lemma 2.2. Let z, w ∈ C with Re(z) > 0, |w| < 1, and ν ∈ C such that νz = o(1). Then2

Log
((
we−νzq; q

)
∞
)

= −Li2(w)
1

z
−
(
ν +

1

2

)
Log(1− w)− ν2z

2

w

1− w
+ ψw(ν, z).

Here ψw(ν, z), for R ∈ N, has an asymptotic expansion as z → 0 with Re(z) > 0

ψw(ν, z) = −
R−1∑
r=2

(
Br(−ν)− δr,2ν2

)
Li2−r(w)

zr−1

r!
+O

(
zR−1

)
, (2.2)

with δj,k the Kronecker delta symbol. In particular, for every n ∈ N0 the coefficient of νn is O(z
2n
3 ).

Remark. [9, Lemma 2.1] is only stated for real z. However, a line-by-line check of the proof therein
shows that the statement still holds for complex z.

We also make use of the following version of the Euler–Maclaurin summation formula. The classi-
cal version of Euler–Maclaurin summation compares the sum

∑m
n=0 F (n) to the integral

∫m
0 F (x)dx;

this version makes use of the same expressions but with a change of variables F (x) = f(xz+ a). A
related “shifted” version of Euler–Maclaurin, can also be found in Proposition 3 of [19].

1Throughout, we take the principal branch for the logarithm.
2In [9, Lemma 2.1], there is a cyclic quantum dilogarithm term, which vanishes if q approaches 1.
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Proposition 2.3. Let a, z ∈ C. Let f be a holomorphic function that is defined in L(a, z) :=
{tz + a : t ∈ R+

0 }. Then we have, for all m,R ∈ N,

m∑
n=0

f(nz + a) =
1

z

∫ a+mz

a
f(x)dx+

f(mz + a) + f(a)

2

+
R∑
r=1

B2rz
2r−1

(2r)!

(
f (2r−1)(mz + a)− f (2r−1)(a)

)
+O(1)z2R

∫ a+mz

a

∣∣∣f (2R+1)(x)
∣∣∣ dx.

Furthermore, if f has rapid decay on L(a, z), then we have∑
n≥0

f(nz + a) =
1

z

∫ a+z∞

a
f(x)dx+

f(a)

2

−
R∑
r=1

B2rz
2r−1

(2r)!
f (2r−1)(a) +O(1)z2R

∫ a+z∞

a

∣∣∣f (2R+1)(x)
∣∣∣ dx.

3. Asymptotic formulas for summands

3.1. The setup. We study the asymptotics as z → 0, in the right half-plane, of the function

e−H(n)z∏N
j=1(q; q)nj

. (3.1)

For z real, asymptotics for (3.1) were obtained in [9, 18]. To avoid confusion, we write ε > 0 for a
real variable and denote by z = ε(1 + iy) a complex variable with Re(z) > 0. For −2

3 < λ < −1
2 ,

we define, with |µ| the (Euclidean) norm of the vector µ,

Nε,λ :=

{
n ∈ NN0 : n =

log(2)

ε
1 + µ, |µ| ≤ ελ

}
.

Remark. There is a general philosophy behind considering this expansion. As in [9] (see page 3),
and other references studying Nahm sums, natural vectors to “expand” around are solutions to the
so-called Nahm equation (essentially, this corresponds to the saddle point). In our situation, H(n)
can be decomposed into a quadratic form piece and a linear piece, and the quadratic form piece
is simply the form 1

2 |n|
2. In this case, the Nahm equation (see (6) in [9]) becomes 1 − zj = zj,

(1 ≤ j ≤ N) which has unique solution in (0, 1)N equal to 1
21. As explained in Proposition 2.1 of

[9], one should center the expansion around nj ≈ 1
ε log( 1

zj
), which in our case becomes nj ≈ log(2)

ε

for all j. Thus, log(2)
ε 1 is the saddle point we need to expand around, which, philosophically, explains

the definition of Nε,λ. This also becomes apparent in the forthcoming proofs.

In this section, we prove asymptotic formulas for (3.1), in the case n ∈ Nε,λ.

3.2. Narrow range estimates. We prove asymptotic expansions for (3.1) if n ∈ Nε,λ.

Proposition 3.1. Let n ∈ Nε,λ and u ∈ CN be such that, for 1 ≤ j ≤ N ,

nj =
log(2)

z
+
uj√
z
. (3.2)

Suppose that y � εδ for some δ > 0. Then we have

e−H(n)z∏N
j=1(q; q)nj

=
( z
π

)N
2 e

π2N
12z
−Nz

24

2K+ 1
2

e−u
Tu−bTu

√
z
N∏
j=1

exp
(
ξ
(
uj√
z
, z
))

, (3.3)
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where, for R ∈ N, ξ(ν, z) has an asymptotic expansion as z → 0

ξ(ν, z) = −
R−1∑
r=2

(
Br(−ν)− δr,2ν2

)
Li2−r

(
1

2

)
zr−1

r!
+O

(
zR−1

)
. (3.4)

Proof. We write

1

(q; q)nj
=

(
qnj+1; q

)
∞

(q; q)∞
. (3.5)

By (3.2) we have qnj = 1
2e
−uj
√
z. Let νj :=

uj√
z
. Since n ∈ Nε,λ, we have, for some |µj | ≤ ελ,

νj = nj −
log(2)

z
=

(
log(2)

ε
+ µj

)
− log(2)

ε(1 + iy)
=

(
1− 1

1 + iy

)
log(2)

ε
+ µj . (3.6)

If y � εδ, then the first term in (3.6) has size εδ−1. Since |µj | ≤ ελ, we conclude that νjz = o(1).
Thus we may apply Lemma 2.2 with w = 1

2 , and deduce that

Log
((
qnj+1; q

)
∞
)

= −1

z
Li2

(
1

2

)
+ log(2)

(
νj +

1

2

)
−
ν2
j z

2
+ ψ 1

2
(νj , z). (3.7)

By (3.5), (3.7), and Lemma 2.1 we have, with E satisfying E � zL for all L ∈ N,

−Log
(
(q; q)nj

)
= −Li2

(
1

2

)
1

z
+ log(2)

(
νj +

1

2

)
−
ν2
j z

2
+ψ 1

2
(νj , z) +

π2

6z
− 1

2
Log

(
2π

z

)
− z

24
+ E .

Now let ξ(νj , z) := ψ 1
2
(νj , z) + E . Since E � zL for all L ∈ N, it follows that ξ(νj , z) has the same

asymptotic expansion as ψ 1
2
(νj , z). So we may write

−Log
(
(q; q)nj

)
= −1

2
Log

(π
z

)
− z

24
+

(
π2

6
− Li2

(
1

2

))
1

z
+ log(2)νj −

ν2
j z

2
+ ξ(νj , z).

Summing over j gives

−
N∑
j=1

Log
(
(q; q)nj

)
= −N

2
Log

(π
z

)
− Nz

24
+

(
π2

6
− Li2

(
1

2

))
N

z
+

N∑
j=1

(
log(2)νj −

ν2
j z

2
+ ξ(νj , z)

)
. (3.8)

Using (1.3), we note that

−H(n)z = −N log(2)2

2z
− log(2)√

z

N∑
j=1

uj −
1

2
uTu− log(2)

(
K +

1

2

)
− bTu

√
z. (3.9)

We combine (3.8) and (3.9) and get

Log

(
e−H(n)z∏N
j=1(q; q)nj

)
= −N

2
Log

(π
z

)
− Nz

24
+

(
π2

6
− Li2

(
1

2

))
N

z
+

N∑
j=1

(
log(2)νj −

ν2
j z

2
+ ξ(νj , z)

)

−N log(2)2

2z
− log(2)√

z

N∑
j=1

uj −
1

2
uTu− log(2)

(
K +

1

2

)
− bTu

√
z.

Using (2.1), we evaluate

−
(

Li2

(
1

2

)
+

log(2)2

2
− π2

6

)
N

z
= −L

(
1

2

)
N

z
=
π2N

12z
.

Finally, using this and the fact that νj =
uj√
z
, we may rewrite
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Log

(
e−H(n)z∏N
j=1(q; q)nj

)

= −N
2

Log
(π
z

)
+
π2N

12z
− Nz

24
− uTu− bTu

√
z − log(2)

(
K +

1

2

)
+

N∑
j=1

ξ

(
uj√
z
, z

)
.

Finally, we obtain (3.3) by exponentiating. �

Now we use Proposition 3.1 to derive an asymptotic expansion for (3.1).

Proposition 3.2. Assume the setup as in Proposition 3.1. If y � ε
1
3

+δ for some δ > 0, then we
have, for R ∈ N, uniformly in u,

e−H(n)z∏N
j=1(q; q)nj

=
( z
π

)N
2 e

π2N
12z e−u

Tu

2K+ 1
2

R−1∑
r=0

Cr(u)z
r
2 +O

(
ε3Rδ1

)
z
N
2 e

π2N
12z e−u

Tu,

where δ1 := min{δ, 2
3 + λ} > 0. The Cr(u) are defined as coefficients of the formal exponential∑

r≥0

Cr(u)z
r
2 := exp(φ(u, z)), φ(u, z) := −bTu

√
z − Nz

24
+

N∑
j=1

ξ

(
uj√
z
, z

)
, (3.10)

and ξ(ν, z) has the asymptotic expansion given in (3.4).

Proof. Using (3.3) and (3.10), we have, as a formal power series,

e−H(n)z∏N
j=1(q; q)nj

=
( z
π

)N
2 e

π2N
12z

2K+ 1
2

e−u
Tu
∑
r≥0

Cr(u)z
r
2 .

It remains to show that for R ∈ N, uniformly in u,( z
π

)N
2 e

π2N
12z

2K+ 1
2

e−u
Tu
∑
r≥R

Cr(u)z
r
2 = O

(
ε3Rδ1

)
z
N
2 e

π2N
12z e−u

Tu. (3.11)

As y � ε
1
3

+δ, we have z � ε. Since n ∈ Nε,λ, we have |µ| ≤ ελ, and it follows from (3.6) that

νj � ε−
2
3

+δ1 and |u| � ε−
1
6

+δ1 . Now we consider the asymptotic expansion of φ(u, z). As ψ 1
2
(νj , z)

and ξ(νj , z) have the same asymptotic expansion (see the proof of Proposition 3.1), we use (2.2)
and deduce for S ≥ 3 that

φ(u, z) = −bTu
√
z − Nz

24
−

N∑
j=1

S−1∑
r=2

(
Br

(
− uj√

z

)
− δr,2

u2
j

z

)
Li2−r

(
1

2

)
zr−1

r!

+O
(
ε

1
3

(S−3)+Sδ1
)
. (3.12)

Uniformity in u follows as the implied constant in the error term is independent of u.
Finally, we prove the proposition by showing that exponentiating (3.12) gives a well-defined

asymptotic series. For this rewrite (3.12) as a formal power series in z
1
2

φ(u, z) =:
∑
m≥1

gm(u)z
m
2 .

Then, since deg(Bm) = m, it follows that deg(gm) ≤ m+ 2. For m ∈ N, we have

gm(u)z
m
2 � ε(m+2)(− 1

6
+δ1)+m

2 � ε
m−1

3
+(m+2)δ1 .
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It follows that for all M ∈ N, we have
∑M

m=1 gm(u)z
m
2 = O(ε3δ1) uniformly in u. We exponentiate

(3.12) and obtain a formal expression

exp(φ(u, z)) = exp

∑
m≥1

gm(u)z
m
2

 =
∏
m≥1

∑
k≥0

gm(u)kz
mk
2

k!
=:
∑
r≥0

Cr(u)z
r
2 ,

with C0(u) = 1. We claim that deg(Cr) ≤ 3r for all r ∈ N. To see this, we observe that

deg(Cr) ≤ max∑
`m`=r

 ∑
(m1,m2,... )

deg(gm`)

 .

Here the maximum is taken over sequences (m1,m2, . . . ) of non-negative integers satisfying
∑

`m` =
r. But since deg(gm) ≤ m + 2 ≤ 3m for m ∈ N, we deduce that deg(Cr) ≤ 3r for all r ∈ N as

claimed. From |u| � ε−
1
6

+δ1 it follows that for all R ∈ N, uniformly in u,

exp(φ(u, z)) =

R−1∑
r=0

Cr(u)z
r
2 +O

(
ε3Rδ1

)
.

This proves (3.11), and hence the proposition. �

3.3. Wider range estimates. To establish an alternative asymptotic expansion for (3.1), which

is valid on the major arc, let A := (1 + 2−(1+iy)

1−2−(1+iy) )IN , with IN the N ×N identity matrix, and

Λ(y) := N

(
π2

6
− log(2)2(1 + iy)2

2
− Li2

(
2−(1+iy)

))
.

Proposition 3.3. Let n ∈ Nε,λ and v ∈ CN be such that for 1 ≤ j ≤ N ,

nj =
log(2)

ε
+

vj√
z
. (3.13)

Suppose that y � ε−1− 3λ
2

+δ for some δ > 0. Then we have

e−H(n)z∏N
j=1(q; q)nj

= 2−(K+ 1
2)(1+iy)

(
1− 2−(1+iy)

)−N
2
− 1√

z

∑N
j=1 vj

( z
2π

)N
2

× exp

Λ(y)

z
− Nz

24
− log(2)(1 + iy)√

z

N∑
j=1

vj −
1

2
vTAv − bTv

√
z

 N∏
j=1

exp

(
ξy

(
vj√
z
, z

))
,

where, for R ∈ N, ξy(ν, z) has an asymptotic expansion, as z → 0,

ξy (ν, z) = −
R−1∑
r=2

(
Br (−ν)− δr,2ν2

)
Li2−r

(
2−(1+iy)

) zr−1

r!
+O

(
zR−1

)
. (3.14)

Remark. Note the difference between u and v in (3.2) and (3.13). Writing n in terms of v
(instead of u) allows to derive an asymptotic expansion which holds for a wider range in y.

Proof of Proposition 3.3. By (3.13), we have qnj = 2−(1+iy)e−vj
√
z. Define νj :=

vj√
z
. Then we have

νj = nj −
log(2)

ε
= O

(
ελ
)
.

If y � ε−1− 3λ
2

+δ, then z � ε−
3λ
2

+δ2 , where δ2 := min{1 + 3λ
2 , δ} > 0 and νjz = o(1).
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Define ω := 2−(1+iy). Observing that |ω| = |2−(1+iy)| < 1, we may apply Lemma 2.2 and deduce

Log
((
qnj+1; q

)
∞
)

= −Li2(ω)

z
−
(
νj +

1

2

)
Log(1− ω)−

ν2
j z

2

ω

1− ω
+ ψω(νj , z).

Using Lemma 2.1 and (3.5), we sum over j and get, with E satisfying E � zL for all L ∈ N,

−
N∑
j=1

Log((q; q)nj ) = −N Li2(ω)

z
+

N∑
j=1

(
−
(
νj +

1

2

)
Log(1− ω)−

ν2
j z

2

ω

1− ω
+ ψω(νj , z)

)

+
π2N

6z
− N

2
Log

(
2π

z

)
− Nz

24
+NE .

Now let ξy(νj , z) := ψω(νj , z) + E . As we have E � zL for all L ∈ N, it follows that ξy(νj , z) has
the same asymptotic expansion as ψω(νj , z). Next, using (1.3), we have

−H(n)z = −N log(2)2(1 + iy)

2ε
− log(2)(1 + iy)√

z

N∑
j=1

vj−
1

2
vTv− log(2)

(
K +

1

2

)
(1 + iy)−bTv

√
z.

The rest of the computation is analogous to that of Proposition 3.1. �

Now we use Proposition 3.3 to derive another asymptotic expansion for (3.1); the proof of the
proposition follows mutatis mutandis the proof of Proposition 3.2 and is omitted here.

Proposition 3.4. Assume the setup in Proposition 3.3. If y � ε−1− 3λ
2

+δ for some δ > 0, then we
have an asymptotic expansion for R ∈ N, uniformly in v,

e−H(n)z∏N
j=1(q; q)nj

= 2−(K+ 1
2)(1+iy)

(
1− 2−(1+iy)

)−N
2
( z

2π

)N
2
e

Λ(y)
z

× e−
1
2
vTAv+ 1√

z (− log(2)(1+iy)−Log(1−2−(1+iy)))
∑N
j=1 vj

R−1∑
r=0

Dr(v, y)z
r
2

+ z
N
2 e

Λ(y)
z e
− 1

2
vTAv+ 1√

z (− log(2)(1+iy)−Log(1−2−(1+iy)))
∑N
j=1 vjO

(
ε2Rδ2

)
,

where δ2 := min{1 + 3λ
2 , δ} > 0, Dr(v, y) are defined as coefficients of the formal exponential

∑
r≥0

Dr(v, y)z
r
2 := exp(φ(v, z)), φ(v, z) := −bTv

√
z − Nz

24
+

N∑
j=1

ξy

(
vj√
z
, z

)
,

and ξy(
vj√
z
, z) has the asymptotic expansion given in (3.14).

4. Error Estimates

In this section, we establish some error estimates which are used in Section 5.

Proposition 4.1. For every L ∈ N, as Re(z)→ 0 in the right half-plane, we have

∑
n∈NN0 \Nε,λ

∣∣∣∣∣ e−H(n)z∏N
j=1(q; q)nj

∣∣∣∣∣� εLe
π2N
12ε .
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Proof. First suppose that z = ε is real, i.e., y = 0. Fix n ∈ NN0 \Nε,λ, and let µ ∈ RN be such that

nj = log(2)
ε + µj for 1 ≤ j ≤ N . We use (3.5). Observe that qnj = 1

2e
−µjε. Using the power series

expansion log(1− x) = −
∑

n≥1
xn

n , we expand

N∑
j=1

log
((
qnj+1; q

)
∞
)

= −
N∑
j=1

∑
k≥1

1

k · 2k
e−kµjε

ekε − 1
. (4.1)

Since ex > 1 + x for all x 6= 0 and 1
ex−1 >

1
x −

1
2 for x > 0, we have

e−kµjε

ekε − 1
> (1− kµjε)

(
1

kε
− 1

2

)
=

1

kε
−
(
µj +

1

2

)
+
kµjε

2
.

Plugging this into (4.1) gives

N∑
j=1

log
((
qnj+1; q

)
∞
)
< −N Li2

(
1

2

)
1

ε
+

N∑
j=1

(
log(2)

(
µj +

1

2

)
− µjε

2

)
. (4.2)

Combining (4.2) and Lemma 2.1 yields for L ∈ N, as ε→ 0,

log

(
e−H(n)ε∏N
j=1(q;q)nj

)
< −H(n)ε+ π2N

6ε −Li2
(

1
2

)
N
ε −

N
2 log

(
π
ε

)
− Nε

24 +
(
log(2)− ε

2

) N∑
j=1

µj +NE . (4.3)

Next we compute

−H(n)ε = − log(2)2N

2ε
− log(2)

N∑
j=1

µj − µTµ
ε

2
− log(2)

N∑
j=1

bj − bTµε. (4.4)

Plugging (4.4) into (4.3) and using (2.1) gives

log

(
e−H(n)ε∏N
j=1(q; q)nj

)
<
π2N

12ε
+ T, (4.5)

where

T := −N
2

log
(π
ε

)
− Nε

24
− ε

2

N∑
j=1

µj − µTµ
ε

2
− log(2)

N∑
j=1

bj − bTµε+NE .

If δ > 0, l < −1
2 − δ, and |µ| > εl, then T is dominated by −µTµ ε

2 and there exists ε0 > 0,

independent of l, such that T < −1
4ε

2l+1 for ε < ε0. Plugging this into (4.5) shows, for ε < ε0, that

e−H(n)ε∏N
j=1(q; q)nj

< e
π2N
12ε
− ε

2l+1

4 . (4.6)

Now consider the sum∑
n∈NN0 \Nε,λ

e−H(n)ε∏N
j=1(q; q)nj

=
∑
r≥1

∑
n∈NN0 \Nε,λ

ε−r+1<|µ|≤ε−r

e−H(n)ε∏N
j=1(q; q)nj

=:
∑
r≥1

R(r). (4.7)

For R(1), the sum is over n ∈ NN0 \ Nε,λ with 1 < |µ| ≤ ε−1. Note that n ∈ NN0 \ Nε,λ implies

|µ| > ελ, so we are really summing the terms with ελ < |µ| ≤ ε−1. From (4.6), the summands in

R(1) are bounded by e
π2N
12ε
− ε

2λ+1

4 . Since R(1) contains O(ε−N ) terms, we conclude that for ε < ε0

R(1)� e
π2N
12ε
− ε

2λ+1

4

εN
. (4.8)
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Now consider the summands in R(r) for r ≥ 2. Since |µ| > ε−r+1, it follows from (4.6) that the

summand is bounded by e
π2N
12ε
− ε

3−2r

4 . As R(r) contains O(ε−Nr) terms, we conclude that for ε < ε0,

R(r)� e
π2N
12ε
− ε

3−2r

4

εNr
. (4.9)

Plugging (4.8) and (4.9) into (4.7), we deduce that

∑
n∈NN0 \Nε,λ

e−H(n)ε∏N
j=1(q; q)nj

=
∑
r≥1

R(r)� e
π2N
12ε

e−ε 2λ+1
4

εN
+
∑
r≥2

e−
ε3−2r

4

εNr

� εLe
π2N
12ε

for all L ∈ N as ε→ 0. This establishes the statement for z real.
The general case follows from the trivial bound∣∣∣∣∣ e−H(n)z∏N

j=1(q; q)nj

∣∣∣∣∣ ≤ e−H(n)ε∏N
j=1 (|q| ; |q|)nj

. �

The following proposition helps to establish the minor arc estimate for (1.2).

Proposition 4.2. Let n ∈ Nε,λ, and suppose that ε−δ < |y| ≤ π
ε for some δ > 0 sufficiently small.

Then we have, for all L ∈ N,

e−H(n)z∏N
j=1(q; q)nj

� εLe
π2N
12ε .

Proof. As q = e−z = e−ε(1+iy), the assumption ε−δ < |y| ≤ π
ε implies that ε1−δ < |Arg(q)| ≤ π.

For 1 ≤ j ≤ N , define the sets

Qj :=
{
qk : 1 ≤ k ≤ nj

}
, Q−j := {s ∈ Qj : Re(s) ≤ 0} , Q+

j := Qj\Q−j .

If ε1−δ < |Arg(q)| ≤ π and n ∈ Nε,λ, then one can show that there exists C > 0, independent of j,

such that |Q−j | ≥ Cnj for ε > 0 sufficiently small.

Next we give an upper bound for |(q; q)−1
nj |. For this, we note that for s ∈ C, we have |1− s| > 1

if Re(s) < 0. It follows that∣∣∣∣ 1

(q; q)nj

∣∣∣∣ ≤ ∏
1≤k≤nj
qk∈Q+

j

1∣∣1− qk∣∣ ≤ ∏
1≤k≤nj
qk∈Q+

j

1

1− |q|k
.

As shown above for ε > 0 sufficiently small, we have |Q−j | ≥ Cnj . It follows that the number

of terms in the product is bounded above by |Q+
j | ≤ (1 − C)nj . As (1 − |q|k)−1 decreases as k

increases, we obtain an upper bound∣∣∣∣ 1

(q; q)nj

∣∣∣∣ ≤ ∏
1≤k≤nj
qk∈Q+

j

1

1− |q|k
≤
b(1−C)njc∏

k=1

1

1− |q|k
=

1

(|q|; |q|)b(1−C)njc
.

This yields ∣∣∣∣∣ e−H(n)z∏N
j=1(q; q)nj

∣∣∣∣∣ ≤ e−H(n)ε∏N
j=1(|q|; |q|)b(1−C)njc

.
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Finally, if n ∈ Nε,λ and ε > 0 is sufficiently small, then we have

e−H(n)ε∏N
j=1(|q|; |q|)b(1−C)njc

≤ e−H(b(1−C)n1c,...,b(1−C)nN c)ε∏N
j=1(|q|; |q|)b(1−C)njc

= o

(
εLe

π2N
12ε

)
for all L ∈ N by Proposition 4.1, since (b(1− C)n1c, . . . , b(1− C)nNc) 6∈ Nε,λ. �

5. Asymptotics for d
[K]
α,β;N (n)

We split the sum D[K]
α,β;N as

D[K]
α,β;N (q) =

∑
`∈(Z/NZ)N

D[K]
α,β;N,`(q), D[K]

α,β;N,`(q) :=
∑

n∈Sα,β;N,`

qNH(n)∏N
j=1 (qN ; qN )nj

, (5.1)

where Sα,β;N,` := {n ∈ Sα,β : n ≡ ` (modN)}. We always pick the representative for ` ∈ (Z/NZ)N

with 0 ≤ `j < N (1 ≤ j ≤ N). Let ζN := e
2πi
N . Then we have

D[K]
α,β;N,`(ζNe

−z) = ζ
NH(`)
N f

[K]
α,β;N,`(z),

where

f
[K]
α,β;N,`(z) :=

∑
n∈Sα,β;N,`

e−NH(n)z∏N
j=1 (e−Nz; e−Nz)nj

.

It is more convenient to investigate

g
[K]
α,β;N,`(z) := f

[K]
α,β;N,`

( z
N

)
=

∑
n∈Sα,β;N,`

e−H(n)z∏N
j=1 (e−z; e−z)nj

.

We split

g
[K]
α,β;N,`(z) = g

[K,1]
α,β;N,`(z) + g

[K,2]
α,β;N,`(z), (5.2)

where

g
[K,1]
α,β;N,`(z) :=

∑
n∈Sα,β;N,`∩Nε,λ

e−H(n)z∏N
j=1(e−z; e−z)nj

, g
[K,2]
α,β;N,`(z) :=

∑
n∈Sα,β;N,`\Nε,λ

e−H(n)z∏N
j=1(e−z; e−z)nj

.

Proposition 5.1. If y � ε1+λ+δ for some δ > 0, then we have, for R ∈ N as z → 0,

g
[K,1]
α,β;N,`(z) =

e
π2N
12z

2K+ 1
2π

N
2

R−1∑
r=0

E`,rz
r
2 +O

(
εN(λ+ 1

2)+3R(λ+ 2
3)e

π2N
12ε

)
,

where the E`,r are explicitly computable. In particular, for every L ∈ N, we have as, z → 0, with

R0 = R0(L) := dL−N(λ+ 1
2

)

3λ+2 e

g
[K,1]
α,β;N,`(z) =

e
π2N
12z

2K+ 1
2π

N
2

R0−1∑
r=0

E`,rz
r
2 +O

(
εLe

π2N
12ε

)
.

We prove Proposition 5.1 in a series of lemmas. Let Tα,β;N,` be the bijective image of Sα,β;N,`

under n 7→ u given in (3.2), and Uε,λ the bijective image of Nε,λ under the same map. Since n 7→ u

takes RN to (− log(2)√
z

+ R
√
z)N , we have Tα,β;N,` ⊆ (− log(2)√

z
+ R
√
z)N ⊆ CN .
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Lemma 5.2. If y � ε1+λ+δ for some δ > 0 and P (u) is a polynomial in u, then, as z → 0,∑
u∈Tα,β;N,`\Uε,λ

∣∣∣P (u)e−u
Tu
∣∣∣ = O

(
εL
)
, and

∫
(
− log(2)√

z
+R
√
z
)N∖

Uε,λ

∣∣∣P (u)e−u
Tu
∣∣∣du = O

(
εL
)
.

for all L ∈ N.

Proof. Let µ ∈ RN be such that nj = log(2)
ε + µj for 1 ≤ j ≤ N . We may rewrite

uj =
log(2)

√
z

ε

(
1− 1

1 + iy

)
+ µj

√
z. (5.3)

For y � ε1+λ+δ, the first term in (5.3) has size � ε
1
2

+λ+δ. This implies that

Im(uj)� ε
1
2

+λ+δ + ε
3
2

+λ+δµj .

Meanwhile, if µj � ελ, then we have Re(uj) � ε
1
2µj . In particular, this implies that Im(uj) �

εδ Re(uj). As n /∈ Nε,λ, we have |µ| > ελ, and in particular there is some j such that µj � ελ for

some j. Thus −uTu has negative real part of size � ε1+2λ as ε→ 0. As 1 + 2λ < 0, this implies∑
u∈Tα,β;N,`\Uε,λ

∣∣∣P (u)e−u
Tu
∣∣∣ = O

(
εL
)
, and

∫
(
− log(2)√

z
+R
√
z
)N∖

Uε,λ

∣∣∣P (u)e−u
Tu
∣∣∣du = O

(
εL
)

for all L ∈ N, noting that P (u) only has polynomial growth. �

Now we prove a bound on the size of the exponential factors appearing in Proposition 3.2.

Lemma 5.3. If y � ε1+λ+δ for some δ > 0, and u ∈ Uε,λ, then we have, as z → 0,∣∣∣∣eπ2N
12z e−u

Tu

∣∣∣∣ ≤ eπ2N
12ε .

Proof. We first estimate the real and the imaginary parts of
√
z. Writing

√
z := ε0(1+iy0), we have

ε = ε2
0(1− y2

0) and y = 2y0

1−y2
0
. Since ε > 0, we have 1− y2

0 > 0, thus |y0| < 1. So 0 < 1− y2
0 < 1, and

y = 2y0

1−y2
0
≥ 2y0. Since y � ε1+λ+δ, we have 1−y2

0 = 1+O(ε2+2λ+2δ), and ε0 = ε
1
2 (1+O(ε2+2λ+2δ)).

We next bound eRe(−uTu). For this, we compute

Re
(
−uTu

)
=

N∑
j=1

Re
(
−u2

j

)
=

N∑
j=1

(
Im(uj)

2 − Re(uj)
2
)
. (5.4)

Since

uj = − log(2)

ε0

(
1− iy0 − y2

0 +O
(
y3

0

))
+ njε0(1 + iy0),

it follows that

Im(uj) =
log(2)

ε0

(
y0 +O

(
y3

0

))
+ njε0y0,

Im(uj)
2 =

log(2)2

ε2
0

(
y2

0 +O
(
y3

0

))
+ nj log(2)

(
y2

0 +O
(
y3

0

))
+ n2

jε
2
0y

2
0. (5.5)

Since u ∈ Uε,λ, we deduce that nj = 1
ε (log(2) +O(ε1+λ)). Plugging this into (5.5), we get

Im(uj)
2 =

log(2)2

ε2
0

(
y2

0 +O
(
y3

0

))
+

1

ε

(
log(2) +O

(
ε1+λ

))
log(2)

(
y2

0 +O
(
y3

0

))
+

1

ε2

(
log(2) +O

(
ε1+λ

))2
ε2

0y
2
0.
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Using ε = ε2
0(1− y2

0), (1− y2
0)−1 = 1 + y2

0 +O(y4
0), and y0 � ε1+λ+δ, we may expand

Im(uj)
2 =

log(2)2
(
1− y2

0

)
ε

(
y2

0 +O
(
y3

0

))
+

1

ε

(
log(2) +O

(
ε1+λ

))
log(2)

(
y2

0 +O
(
y3

0

))
+

1

ε

(
log(2) +O

(
ε1+λ

))2
y2

0

(
1 + y2

0 +O
(
y4

0

))
=

log(2)2y2
0

ε
(1 +O(y0)) +

log(2)2y2
0

ε

(
1 +O

(
ε1+λ

))
+

log(2)2y2
0

ε

(
1 +O

(
ε1+λ

))
=
y2

0

ε

(
3 log(2)2 +O

(
ε1+λ

))
≤ y2

ε

(
3

4
log(2)2 +O

(
ε1+λ

))
.

It follows by (5.4) that

Re
(
−uTu

)
≤ Ny2

ε

(
3

4
log(2)2 +O

(
ε1+λ

))
. (5.6)

On the other hand, we have

Re

(
π2N

12z

)
=
π2N

12ε
Re

(
1

1 + iy

)
=
π2N

12ε

(
1− y2 +O

(
y4
))
.

Combining this with (5.6) we obtain, for ε > 0 sufficiently small

Re

(
π2N

12z

)
+ Re

(
−uTu

)
=
N

ε

(
π2

12
+ y2

(
3

4
log(2)2 − π2

12
+O

(
ε1+λ

))
+O

(
y4
))
≤ π2N

12ε
. �

We next show the following lemma.

Lemma 5.4. If y � ε1+λ+δ for some δ > 0, then for R ∈ N we have, as z → 0,

g
[K,1]
α,β;N,`(z) =

( z
π

)N
2 e

π2N
12z

2K+ 1
2

R−1∑
r=0

∑
u∈Tα,β;N,`∩Uε,λ

e−u
TuCr(u)z

r
2 +O

(
εN(λ+ 1

2)+3R(λ+ 2
3)e

π2N
12ε

)
.

Proof. Summing the asymptotics in Proposition 3.2, we obtain3

g
[K,1]
α,β;N,`(z) =

( z
π

)N
2 e

π2N
12z

2K+ 1
2

R−1∑
r=0

∑
u∈Tα,β;N,`∩Uε,λ

e−u
TuCr(u)z

r
2

+ z
N
2 e

π2N
12z O

(
ε3R(λ+ 2

3)
) ∑
u∈Tα,β;N,`∩Uε,λ

e−u
Tu. (5.7)

Since the summation over Tα,β;N,`∩Uε,λ contains� εNλ terms, it follows from Lemma 5.3 that the
second term on the right-hand side of (5.7) is bounded as claimed. �

For convenience, we set for j ∈ N0

Gj(u) := e
π2N
12z Cj(u)e−u

Tu,

where the polynomial Cj(u) is defined in (3.10); in particular, we have deg(Cj) ≤ 3j (see the proof
of Proposition 3.2). We next estimate

∑
u∈Tα,β;N,`∩Uε,λ Gj(u).

3Note that δ1 in Proposition 3.2 takes the value δ1 = λ+ 2
3
. The error in (5.7) makes sense, because the error in

Proposition 3.2 is uniform in u.
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Lemma 5.5. If y � ε1+λ+δ for some δ > 0, then, for R ∈ N, we have, as z → 0,

∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) = e
π2N
12z

R−1∑
r=−N

Vj,rz
r
2 +O

(
ε(λ+ 1

2)(3j+2N+R−1)+N+R
2
−1e

π2N
12ε

)
.

Proof. For the first step, we consider the sum over uα, the α-th component of u. To emphasize
this component, we write u[1] to denote the remaining N − 1 components of u, and u = (u[1], uα).
Note that this notation does not say that uα is the N -th component of u.

We decompose∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) =
∑

u[1]∈CN−1

∃uα∈C,(u[1],uα)∈Tα,β;N,`∩Uε,λ

∑
uα∈uα(u[1])

(u[1],uα)∈Uε,λ

Gj
(
u[1], uα

)
, (5.8)

where

uα
(
u[1]

)
:=
{
uβ + t

√
z : t ∈ [`α − `β]N +NN0

}
.

If u[1] is such that there exists uα ∈ C with (u[1], uα) ∈ Tα,β;N,` ∩ Uε,λ, then we have

uα
(
u[1]

)
=
{
uα ∈ C :

(
u[1], uα

)
∈ Tα,β;N,`

}
,

so the decomposition (5.8) makes sense. We evaluate the sum variable by variable, starting with
the innermost sum over uα. By Lemma 5.2, we may extend the inner sum in (5.8) by removing the

condition (u[1], uα) ∈ Uε,λ. This introduces an error term of size O(εL)e
π2N
12z for all L ∈ N, which is

negligible. By Proposition 2.3 with a = uβ + [`α − `β]N
√
z, z 7→ N

√
z, we obtain

∑
uα∈uα(u[1])

Gj
(
u[1], uα

)
=

1

N
√
z

∫ uβ+
√
z∞

uβ+[`α−`β ]N
√
z
Gj
(
u[1], uα

)
duα +

1

2
Gj
(
u[1], uβ + [`α − `β]N

√
z
)

−
R∑
r=1

B2rN
2r−1zr−

1
2

(2r)!
G

(2r−1)
j

(
u[1], uβ + [`α − `β]N

√
z
)

+O(1)zR
∫ uβ+

√
z∞

uβ+[`α−`β ]N
√
z

∣∣∣G(2R+1)
j

(
u[1], uα

)∣∣∣ duα. (5.9)

First we estimate the second integral in (5.9). By a direct calculation, we see that, for k ∈ N

G
(k)
j

(
u[1], uα

)
= e

π2N
12z Pk(u)e−u

Tu,

where the derivative is taken with respect to uα and where Pk(u) is a polynomial of degree at most
3j + k. By Lemma 5.2, we may restrict the second integral in (5.9) to Uε,λ, introducing an error

of size O(εL)e
π2N
12z for all L ∈ N. Now we consider the part of the integral over Uε,λ, which has

measure � ελ+ 1
2 . For u ∈ Uε,λ, we use |u| � ελ+ 1

2 and Lemma 5.3 to conclude that

G
(k)
j

(
u[1], uα

)
� ε(λ+ 1

2)(3j+k)e
π2N
12ε . (5.10)

Hence ∫ uβ+
√
z∞

uβ+[`α−`β ]N
√
z

∣∣∣G(2R+1)
j

(
u[1], uα

)∣∣∣ duα � ε(λ+ 1
2)(3j+2R+2)e

π2N
12ε . (5.11)
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Next we consider the first integral in (5.9). We split

uβ+
√
z∞∫

uβ+[`α−`β ]N
√
z

Gj
(
u[1], uα

)
duα =

uβ+
√
z∞∫

uβ

Gj
(
u[1], uα

)
duα −

uβ+[`α−`β ]N
√
z∫

uβ

Gj
(
u[1], uα

)
duα.

We keep the first integral on the right-hand side. For the second integral, we apply Proposition 2.3
(with a = uβ, z 7→ [`α − `β]N

√
z) to obtain∫ uβ+[`α−`β ]N

√
z

uβ

Gj
(
u[1], uα

)
duα =

[`α − `β]N
√
z

2

(
Gj
(
u[1], uβ + [`α − `β]N

√
z
)

+Gj
(
u[1], uβ

))
−

R∑
r=1

B2r[`α − `β]2rN z
r

(2r)!

(
G

(2r−1)
j

(
u[1], uβ + [`α − `β]N

√
z
)
−G(2r−1)

j

(
u[1], uβ

))
+O(1)zR+ 1

2

∫ uβ+[`α−`β ]N
√
z

uβ

∣∣∣G(2R+1)
j

(
u[1], uα

)∣∣∣ duα. (5.12)

Using (5.10), we conclude∫ uβ+[`α−`β ]N
√
z

uβ

∣∣∣G(2R+1)
j

(
u[1], uα

)∣∣∣� ε(λ+ 1
2)(3j+2R+1)+ 1

2 e
π2N
12ε . (5.13)

It remains to consider terms of the form G
(k)
j (u[1], uβ+[`α−`β]N

√
z) appearing in (5.9) and (5.12).

We apply Taylor’s Theorem and rewrite

G
(k)
j

(
u[1], uβ + [`α − `β]N

√
z
)

=
R−1∑
r=0

[`α − `β]rNz
r
2

r!
G

(k+r)
j

(
u[1], uβ

)
+

1

(R− 1)!

∫ uβ+[`α−`β ]N
√
z

uβ

G
(k+R)
j

(
u[1], uα

)
(uα − uβ)R−1duα. (5.14)

Using (5.10), we conclude that∫ uβ+[`α−`β ]N
√
z

uβ

G
(k+R)
j

(
u[1], uα

)
(uα − uβ)R−1duα � ε(λ+ 1

2)(3j+k+R)+R
2 e

π2N
12ε . (5.15)

Combining (5.9), (5.12), (5.14), and applying the error estimates (5.11), (5.13), and (5.15), we write

∑
uα∈uα(u[1])

Gj
(
u[1], uα

)
=

1

N
√
z

∫ uβ+
√
z∞

uβ

Gj
(
u[1], uα

)
duα +

R−1∑
r=0

WrG
(r)
j

(
u[1], uβ

)
z
r
2

+O

(
ε(λ+ 1

2)(3j+R+1)+R−1
2 e

π2N
12ε

)
, (5.16)

where

W0 =
1

2
−

[`α − `β]N
N

, (5.17)

Wr =

(
1

2
−

[`α − `β]N
2N

)
[`α − `β]rN

r!
+

d r
2
e∑

t=1

B2t

(
[`α − `β]2tN −N2t

)
[`α − `β]r−2t+1

N

(2t)!(r − 2t+ 1)!N

− δr≡1 (mod 2)
Br+1[`α − `β]r+1

N

(r + 1)!N
, (r ≥ 1).
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Next we consider the summation over the other variables. We set

Gj,α
(
u[1]

)
:=

∑
uα∈uα(u[1])

Gj
(
u[1], uα

)
.

Let 1 ≤ c ≤ N , c 6= α, and consider the summation over uc. To emphasize the c-th and the
α-th entries of u, we write u[2] to denote the remaining N − 2 components of u, and write u =
(u[2], uc, uα). We are again abusing notation and this does not mean that uc, uα are the final
components of u. We write u[1] = (u[2], uc). We consider∑

u∈Tα,β;N,`∩Uε,λ

Gj(u) =
∑

u[2]∈CN−2

∃uc,uα∈C,(u[2],uc,uα)∈Tα,β;N,`∩Uε,λ

∑
uc∈uc, uα∈uα(u[2],uc)

(u[2],uc,uα)∈Uε,λ

Gj
(
u[1], uα

)
,

where

uc :=

{
− log(2)√

z
+ t
√
z : t ∈ `c +NN0

}
.

Analogous to the summation over uα, we may use Lemma 5.2 to extend the sum by removing

the condition (u[2], uc, uα) ∈ Uε,λ, introducing an error of size O(εL)e
π2N
12z for all L ∈ N, which is

negligible. So we may consider instead the sum∑
uc∈uc

uα∈uα(u[2],uc)

Gj
(
u[2], uc, uα

)
=
∑
uc∈uc

Gj,α
(
u[2], uc

)
.

Again, we apply Proposition 2.3, and write

∑
uc∈uc

Gj,α
(
u[2], uc

)
=

1

N
√
z

∫ − log(2)√
z

+
√
z∞

− log(2)√
z

+`c
√
z
Gj,α

(
u[2], uc

)
duc +

1

2
Gj,α

(
u[2],−

log(2)√
z

+ `c
√
z

)

−
R∑
r=1

B2rN
2r−1zr−

1
2

(2r)!
G

(2r−1)
j,α

(
u[2],−

log(2)√
z

+ `c
√
z

)

+O(1)zR
∫ − log(2)√

z
+
√
z∞

− log(2)√
z

+`c
√
z

∣∣∣G(2R+1)
j,α

(
u[2], uc

)∣∣∣ duc. (5.18)

Thanks to the exponential decay of e−u
Tu, we have, as z → 0 for all r ∈ N0 and L ∈ N,

G
(r)
j,α

(
u[2],−

log(2)√
z

+ `c
√
z

)
= O

(
εL
)
e
π2N
12z ,

∫ − log(2)√
z

+`c
√
z

− log(2)√
z
−
√
z∞

Gj,α
(
u[2], uc

)
duc = O

(
εL
)
e
π2N
12z . (5.19)

Therefore, the lower boundary of the first integral in (5.18) can be extended to − log(2)√
z
−
√
z∞, and

all the terms except for the main term can be ignored introducing an error term of size O(εL)e
π2N
12z

for all L ∈ N. Meanwhile, the error term in (5.18) has size

zR
∫ − log(2)√

z
+
√
z∞

− log(2)√
z

+`c
√
z

∣∣∣G(2R+1)
j,α

(
u[2], uc

)∣∣∣ duc = O

(
ε(λ+ 1

2)(3j+2R+2)+R+λe
π2N
12ε

)
. (5.20)

By taking R sufficiently large, it follows from (5.18), (5.19), and (5.20) that∑
uc∈uc

Gj,α
(
u[2], uc

)
=

1

N
√
z

∫
− log(2)√

z
+R
√
z
Gj,α

(
u[2], uc

)
duc +O

(
εLe

π2N
12ε

)
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for all L ∈ N. Using the same argument, we sum over the other coordinates, and obtain that∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) =
z

1−N
2

NN−1

∫
(
− log(2)√

z
+R
√
z
)N−1

Gj,α
(
u[1]

)
du[1] +O

(
εLe

π2N
12ε

)
for all L ∈ N. Again, we may use Lemma 5.2 to restrict the integral to

U[1] :=

{
u[1] ∈

(
− log(2)√

z
+ R
√
z

)N−1

:
∣∣µ[1]

∣∣ ≤ ελ} ,
where µ[1] is the (N−1)-tuple associated to u[1] via (5.3), with a negligible error. So we may write∑

u∈Tα,β;N,`∩Uε,λ

Gj(u) =
z

1−N
2

NN−1

∫
U[1]

Gj,α
(
u[1]

)
du[1] +O

(
εLe

π2N
12ε

)
.

Applying the asymptotic expansion (5.16), we get

∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) =
z−

N
2

NN

∫
U[1]

∫ uβ+
√
z∞

uβ

Gj
(
u[1], uα

)
duαdu[1]

+
R−1∑
r=0

z
1−N+r

2

NN−1
Wr

∫
U[1]

G
(r)
j

(
u[1], uβ

)
du[1] +O

(
ε(λ+ 1

2)(3j+R+1)+R−1
2 e

π2N
12ε

)∫
U[1]

du[1]. (5.21)

Since U[1] has measure � ε(N−1)(λ+ 1
2

), the error term in (5.21) has size

O

(
ε(λ+ 1

2)(3j+R+N)+R−1
2 e

π2N
12ε

)
.

Now, we may use Lemma 5.2 again, to extend the integrals in (5.21) to (− log(2)√
z

+ R
√
z)N−1

∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) =
z−

N
2

NN

∫
(
− log(2)√

z
+R
√
z
)N−1

∫ uβ+
√
z∞

uβ

Gj
(
u[1], uα

)
duαdu[1]

+

R−1∑
r=0

z
1−N+r

2

NN−1
Wr

∫
(
− log(2)√

z
+R
√
z
)N−1

G
(r)
j

(
u[1], uβ

)
du[1] +O

(
ε(λ+ 1

2)(3j+R+N)+R−1
2 e

π2N
12ε

)
.

Finally, since G
(r)
j (u[1], uα) is holomorphic and has rapid decay, we may shift the path and write

∑
u∈Tα,β;N,`∩Uε,λ

Gj(u) =
z−

N
2

NN

∫
Rα,β;N

Gj (u)du

+
R−1∑
r=0

z
1−N+r

2

NN−1
Wr

∫
RN−1

G
(r)
j

(
u[1], uβ

)
du[1] +O

(
ε(λ+ 1

2)(3j+R+N)+R−1
2 e

π2N
12ε

)
,

where Rα,β;N := {u ∈ RN : uα ≥ uβ}. So we may set

Vj,−N :=
e−

π2N
12z

NN

∫
Rα,β;N

Gj(u)du, (5.22)

Vj,r :=
e−

π2N
12z

NN−1
Wr+N−1

∫
RN−1

G
(r+N−1)
j

(
u[1], uβ

)
du[1] (r ≥ −N + 1). (5.23)
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Note that Vj,r does not depend on z. �

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. We estimate the following expression, occuring in Lemma 5.4:( z
π

)N
2 e

π2N
12z

2K+ 1
2

R−1∑
r=0

∑
u∈Tα,β;N,`∩Uε,λ

e−u
TuCr(u)z

r
2 =

1

2K+ 1
2π

N
2

R−1∑
r=0

z
N+r

2

∑
u∈Tα,β;N,`∩Uε,λ

Gr(u).

By Lemma 5.5, we have

z
N+r

2

∑
u∈Tα,β;N,`∩Uε,λ

Gr (u) = e
π2N
12z

R−1−r∑
j=0

Vr,j−Nz
r+j

2 +O

(
ε(λ+ 1

2)(2r+N+R−1)+N+R
2
−1e

π2N
12ε

)
.

Summing over r gives

R−1∑
r=0

z
N+r

2

∑
u∈Tα,β;N,`∩Uε,λ

Gr (u) = e
π2N
12z

R−1∑
r=0

r∑
j=0

Vj,r−j−Nz
r
2 +O

(
ε3(R−1)(λ+ 2

3)+N(λ+1)− 1
2 e

π2N
12ε

)
.

Since N ≥ 2 and −2
3 < λ < −1

2 , the error term O(εN(λ+ 1
2

)+3R(λ+ 2
3

)e
π2N
12ε ) from Lemma 5.4 domi-

nates. Setting

E`,r :=
r∑
j=0

Vj,r−j−N (5.24)

gives the proposition. �

Now we show that the asymptotic expansion above can also be applied for larger values of |y|,
with negligible error. We require the following technical lemma about Λ(y).

Lemma 5.6. Let s(y) := Re( Λ(y)
1+iy −

π2N
12 ). Then we have the following:

(1) We have s(y) ≤ 0 for all y ∈ R, and the equality holds if and only if y = 0.
(2) For any y0 > 0, there exists d > 0 such that s(y) < −d for all |y| ≥ y0.
(3) We have, as y → 0,

s(y) = N

(
log(2)2 − π2

12

)
y2 +O

(
y4
)
.

Proof. (1) and (2) are easily verified, and (3) is obtained by evaluating the Taylor series at y = 0. �

Next we show that the asymptotic expansion in Proposition 5.1 gives a good approximation to

g
[K]
α,β;N,`(z) in the range y � ε−1− 3λ

2
+δ, which covers the major arc.

Proposition 5.7. If y � ε−1− 3λ
2

+δ, then, for every L ∈ N,

g
[K]
α,β;N,`(z) =

e
π2N
12z

2K+ 1
2π

N
2

R0−1∑
r=0

E`,rz
r
2 +O

(
εLe

π2N
12ε

)
as z → 0, where E`,r and R0 = R0(L) are as in Proposition 5.1.

Proof. We split as in (5.2). By Proposition 4.1, we have, for all L ∈ N as z → 0,

g
[K,2]
α,β;N,`(z)� εLe

π2N
12ε .
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So it remains to estimate g
[K,1]
α,β;N,`. The proposition follows from the following claim:

e−
π2N
12ε

g[K,1]
α,β;N,`(z)−

e
π2N
12z

2K+ 1
2π

N
2

R0−1∑
r=0

E`,rz
r
2

 = O
(
εL
)
.

From Proposition 3.4, if y � ε−1− 3λ
2

+δ, then we have an asymptotic expansion

e−
π2N
12ε g

[K,1]
α,β;N,`(z) = 2−(K+ 1

2)(1+iy)
(

1− 2−(1+iy)
)−N

2
( z

2π

)N
2
e

1
ε

(
Λ(y)
1+iy

−π
2N
12

)
(5.25)

×
∑

n∈Sα,β;N,`∩Nε,λ

e
− 1

2
vTAv+ 1√

z (− log(2)(1+iy)−Log(1−2−(1+iy)))
∑N
j=1 vj

R0−1∑
r=0

Dr(v, y)z
r
2

+ z
N
2 e

1
ε

(
Λ(y)
1+iy

−π
2N
12

)
O
(
ε2R0δ2

) ∑
n∈Sα,β;N,`∩Nε,λ

e
− 1

2
vTAv+ 1√

z (− log(2)(1+iy)−Log(1−2−(1+iy)))
∑N
j=1 vj .

We claim that if ε
1
2
−δ � y � ε−1− 3λ

2
+δ for some δ > 0, then we have, for all L ∈ N,

e−
π2N
12ε g

[K,1]
α,β;N,`(z) = O

(
εL
)
. (5.26)

To prove (5.26), it suffices to show that the exponent

1

ε

(
Λ(y)

1 + iy
− π2N

12

)
− 1

2
vTAv +

1√
z

(
− log(2)(1 + iy)− Log

(
1− 2−(1+iy)

)) N∑
j=1

vj

has negative real part of size � ε−δ0 for some δ0 > 0; the other factors in (5.25) are bounded as

z → 0. By Lemma 5.6 (1) the real part of 1
ε Re( Λ(y)

1+iy −
π2N
12 ) = s(y)

ε is negative. So it suffices to

show that this exponent has sufficiently large size and dominates other exponents with positive real
parts.

First consider the case ε−δ+
1
2 � y � 1 for some (sufficiently small) δ > 0. By Lemma 5.6 (3),

we find that
s(y)

ε
� y2

ε
� ε−2δ

as ε→ 0. Meanwhile, by computing the Taylor series expansion we have, as y → 0,

Re
(
− log(2)(1 + iy)− Log

(
1− 2−(1+iy)

))
� y2.

As |ν| � ελ (see the proof of Proposition 3.3), we conclude that

Re

 1√
z

(
− log(2)(1 + iy)− Log

(
1− 2−(1+iy)

)) N∑
j=1

vj

� ελy2.

Next we consider the exponent −1
2v

TAv. For this we split into two subcases.

(1) Suppose that ε−δ+
1
2 � y � ε

1
4 . Since vj is a real multiple of

√
z, the condition y � ε

1
4 implies

that −1
2v

TAv has negative real part as z → 0.

(2) Suppose ε
1
4 � y � 1. In this case we have |v| � ε

1
2

+λ, and it follows that −1
2v

TAv � ε1+2λ.

In either case, the exponent s(y)
ε has size� ε−2δ and dominate other exponents appearing in (5.25)

that have positive real parts. So we conclude that (5.26) holds if ε−δ+
1
2 � y � 1, by taking δ0 = 2δ.
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Next we consider the case 1� y � ε−1− 3λ
2

+δ for some δ > 0. We use the trivial bound

Re
(
− log(2)(1 + iy)− Log

(
1− 2−(1+iy)

))
� 1.

It then follows from the bound |ν| � ελ that

Re

 1√
z

(
− log(2)(1 + iy)− Log

(
1− 2−(1+iy)

)) N∑
j=1

vj

� ελ.

Meanwhile, by Lemma 5.6 (2), we have s(y)
ε �

1
ε . Finally, as |ν| � ελ and z � ε−

3λ
2

+δ2 , where

δ2 = min{1 + 3λ
2 , δ} > 0 (see the proof of Proposition 3.3), we deduce that |v| � ε

λ
4

+
δ2
2 , and hence

−1
2v

TAv � ε
λ
2

+δ2 .

From the computation above, we have that s(y)
ε � 1

ε , and this exponent dominates the other
exponents. So (5.26) also holds.

For the expression 2−K−
1
2π−

N
2 e

π2N
12z
−π

2N
12ε
∑R0−1

r=0 E`,rz
r
2 , we only have a single exponent, namely

π2N
12z −

π2N
12ε . This exponent has negative real part of size

Re

(
π2N

12z
− π2N

12ε

)
=
π2N

12ε

(
Re

(
1

1 + iy

)
− 1

)
� εmax{1+2λ−2δ,−1}

for ε
1
2
−δ � y � ε−1− 3λ

2
+δ. It follows that, for ε

1
2
−δ � y � ε−1− 3λ

2
+δ, we have, for all L ∈ N,

e
π2N
12z
−π

2N
12ε

2K+ 1
2π

N
2

R0−1∑
r=0

E`,rz
r
2 = O

(
εL
)
.

On the other hand, if y � ε1+λ+δ, then, by Proposition 5.1, we have, for all L ∈ N,

g
[K,1]
α,β;N,`(z)−

e
π2N
12z

2K+ 1
2π

N
2

R0−1∑
r=0

E`,rz
r
2 � εLe

π2N
12ε .

Choosing δ > 0 sufficiently small, the two cases cover the full range y � ε−1− 3λ
2

+δ, establishing the
proposition. �

We are now ready to derive the asymptotic expansion of d
[K]
α,β;N (n).

Theorem 5.8. We have for R ∈ N, as n→∞,

d
[K]
α,β;N (n) =

eπ
√

n
3

2K+ 1
2π

N
2


R−1∑
r=0

∑
`∈(Z/NZ)N

NH(`)≡n (modN)

b r2c∑
j=0

c
r
2
−j,π

2

√
N
3
,j
E`,r−2j

(
N

n

) r+3
4

+O
(
n−

R+3
4

) ,

where E`,r are as in Proposition 5.1 and

cA,B,r :=

(
− 1

4B

)r
BA+ 1

2 Γ
(
A+ r + 3

2

)
2
√
πr!Γ

(
A− r + 3

2

) .

Proof. By Cauchy’s Theorem we have, for n ∈ N0,

d
[K]
α,β;N (n) =

1

2πi

∫
C

D[K]
α,β;N (q)

qn+1
dq,
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where C is a circle centred at the origin inside the unit circle surrounding zero exactly once counter-

clockwise. Using (5.1) and the change of variables q = e−z, we write, for any ε > 0, with ζN := e
2πi
N

d
[K]
α,β;N (n) =

1

N

N−1∑
k=0

∑
`∈(Z/NZ)N

ζ
(n−NH(`))k
N

1

2πi

∫ ε+πi

ε−πi
g

[K]
α,β;N,`(z)e

nz
N dz. (5.27)

Let θ > 0 be fixed. We split the integral into the major arc C1(ε) := {z = ε(1 + iy) : |y| ≤ θ}
and the minor arc C2(ε) := {z = ε(1 + iy) : θ < |y| ≤ π

ε }. Note that Proposition 5.7 applies for the

whole major arc (because ε−1− 3λ
2

+δ � 1). So on the major arc, for every L ∈ N, we have

g
[K]
α,β;N,`(z)−

e
π2N
12z

2K+ 1
2π

N
2

R0−1∑
r=0

E`,rz
r
2 � εLe

π2N
12ε , (5.28)

where R0 = R0(L) is given as in Proposition 5.1. On the minor arc, we use Propositions 4.2 and 5.7
to obtain for all L ∈ N,

g
[K]
α,β;N,`(z)� εLe

π2N
12ε . (5.29)

Let A ≥ 0, B > 0. By [15, Lemma 3.7], we have, as n→∞,

1

2πi

∫
C1
(
B√
n

) zAeB2

z
+nzdz = n

1
4

(−2A−3)e2B
√
n

(
R−1∑
r=0

cA,B,r

n
r
2

+O
(
n−

R
2

))
.

Hence we obtain the asymptotic expansion

2−K−
1
2π−

N
2

2πi

∫
C1
(
πN

2
√

3n

) eπ2N
12z

R−1∑
r=0

E`,rz
r
2 e

nz
N dz

=
eπ
√

n
3

2K+ 1
2π

N
2

R−1∑
r=0

b r2c∑
j=0

c
r
2
−j,π

2

√
N
3
,j
E`,r−2j

(
N

n

) r+3
4

+O
(
n−

R+3
4

) . (5.30)

Meanwhile, if a function h satisfies h(z)� εLe
π2N
12ε as ε→ 0 for L ≥ 0, then we have, as n→∞,

1

2πi

∫ πN
2
√

3n
+πi

πN
2
√

3n
−πi

h(z)e
nz
N dz = O

(
n−

L
2 eπ
√

n
3

)
, (5.31)

and we use (5.31) to evaluate the minor arc integral and the error integral.
Let R ∈ N. We set L = R+3

2 , and we pick R0 = R0(L) as in Proposition 5.1, and write

1

2πi

∫
C
(
πN

2
√

3n

) g[K]
α,β;N,`(z)e

nz
N dz

=
2−K−

1
2π−

N
2

2πi

∫
C
(
πN

2
√

3n

) eπ2N
12z

R0−1∑
r=0

E`,rz
r
2 e

nz
N dz +

1

2πi

∫
C
(
πN

2
√

3n

) h(z)e
nz
N dz,

where we have h(z) � εLe
π2N
12ε = ε

R+3
2 e

π2N
12ε by (5.28) and (5.29). Using (5.30) and (5.31), the

integrals above can be evaluated as

eπ
√

n
3

2K+ 1
2π

N
2

R0−1∑
r=0

b r2c∑
j=0

c
r
2
−j,π

2

√
N
3
,j
E`,r−2j

(
N

n

) r+3
4

+O
(
n−

R0+3
4

)+O
(
n−

R+3
4 eπ
√

n
3

)
.
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As the terms with r ≥ R also have size O(n−
R+3

4 eπ
√

n
3 ), we may truncate the asymptotic expansion,

and obtain

1

2πi

∫
C
(
πN

2
√

3n

) g[K]
α,β;N,`(z)e

nz
N dz =

eπ
√

n
3

2K+ 1
2π

N
2

R−1∑
r=0

b r2c∑
j=0

c
r
2
−j,π

2

√
N
3
,j
E`,r−2j

(
N

n

) r+3
4

+O
(
n−

R+3
4

) .

Plugging this back into (5.27) gives

d
[K]
α,β;N (n) =

eπ
√

n
3

2K+ 1
2π

N
2 N

R−1∑
r=0

N−1∑
k=0

∑
`∈(Z/NZ)N

ζ
(n−NH(`))k
N

b r2c∑
j=0

c
r
2
−j,π

2

√
N
3
,j
E`,r−2j

(
N

n

) r+3
4

+O
(
n−

R+3
4

) .

The theorem follows, using orthogonality of roots of unity. �

6. Proof of Theorems 1.1 and 1.2

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. To prove Theorem 1.1, it suffices to determine the first two terms in Theo-
rem 5.8. We compute

c
0,π

2

√
N
3
,0

=
N

1
4

2
√

2 · 3
1
4

, c
1
2
,π
2

√
N
3
,0

=
1

4

√
πN

3
.

We follow the proof of Proposition 5.1 to determine E`,0 and E`,1. To begin with, we compute the
coefficients C0(u) and C1(u) in the formal power series expansion (3.10). We expand

exp(φ(u, z)) = exp

−bTuz 1
2 − Nz

24
−

N∑
j=1

∑
r≥2

(
Br

(
− uj√

z

)
−
δr,2u

2
j

z

)
Li2−r

(
1

2

)
zr−1

r!

 .

Noting that we have

exp

− N∑
j=1

∑
r≥2

(
Br

(
− uj√

z

)
−
δr,2u

2
j

z

)
Li2−r

(
1

2

)
zr−1

r!

 = 1 +
N∑
j=1

(
−uj

2
+
u3
j

3

)
√
z +O(z),

exp
(
−bTu

√
z
)

= 1−
N∑
j=1

bjuj
√
z +O(z) = 1 +

N∑
j=1

(
− j

N
+

1

2
− ej

)
uj
√
z +O(z),

we get

C0(u) = 1, C1(u) =

N∑
j=1

(
−
(
j

N
+ ej

)
uj +

u3
j

3

)
.

Next we compute the constants V0,−N , V0,1−N , and V1,−N . For this we use the evaluations

e−
π2N
12z

∫
Rα,β;N

G0(u)du =

∫
Rα,β;N

e−u
Tudu =

π
N
2

2
,

e−
π2N
12z

∫
RN−1

G0

(
u[1], uβ

)
du[1] =

∫
RN−1

e
−u2

β−u
T
[1]
u[1]du[1] =

π
N−1

2

√
2
,

where Rα,β;N := {u ∈ RN : uα ≥ uβ}. Meanwhile, we compute

e−
π2N
12z

∫
Rα,β;N

G1(u)du =

∫
Rα,β;N

C1(u)e−u
Tudu
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= −
N∑
j=1

(
j

N
+ ej

)∫
Rα,β;N

uje
−uTudu+

1

3

N∑
j=1

∫
Rα,β;N

u3
je
−uTudu. (6.1)

We consider the first integral on the right-hand side. If j 6∈ {α, β}, then we have∫
Rα,β;N

uje
−uTudu =

∫
uα>uβ

e−u
2
α−u2

βduαduβ

∫
RN−2

uje
−uTudu = 0

because the rightmost integral is anti-symmetric with respect to uj . On the other hand, we have∫
Rα,β;N

uαe
−uTudu =

∫
uα>uβ

uαe
−u2

α−u2
βduαduβ

∫
RN−2

e−u
Tudu =

π
N−1

2

2
√

2
,

∫
Rα,β;N

uβe
−uTudu =

∫
uα>uβ

uβe
−u2

α−u2
βduαduβ

∫
RN−2

e−u
Tudu = −π

N−1
2

2
√

2
.

The second integral on the right of (6.1) is invariant under interchanging uα and uβ. Hence

N∑
j=1

∫
Rα,β;N

u3
je
−uTudu =

1

2

N∑
j=1

∫
RN

u3
je
−uTudu = 0,

since the integral is anti-symmetric. Plugging into (6.1), it follows that

e−
π2N
12z

∫
Rα,β;N

G1(u)du =

(
β − α
N

+ (eβ − eα)

)
π
N−1

2

2
√

2
.

It follows from (5.22) and (5.23) (and (5.17) for W0) that

V0,−N =
π
N
2

2NN
, V0,1−N =

π
N−1

2

√
2NN−1

(
1

2
−

[`α − `β]N
N

)
, V1,−N =

π
N−1

2 (β − α+N(eβ − eα))

2
√

2NN+1
.

Finally, using (5.24), we compute

E`,0 = V0,−N =
π
N
2

2NN
,

E`,1 = V0,1−N + V1,−N =
π
N−1

2

2
√

2NN−1

(
1−

2[`α − `β]N
N

+
β − α+N(eβ − eα)

N2

)
.

Theorem 1.1 then follows from Theorem 5.8. �

To prove Theorem 1.2, we need the following lemma, which follows by a direct calculation.

Lemma 6.1. Let N ≥ 5, 1 ≤ α, β ≤ N , and r, `α, `β ∈ Z/NZ. Then

#
{
`[2] ∈ (Z/NZ)N−2 : NH

(
`[2], `α, `β

)
≡ r (modN)

}
= NN−3,

where `[2] ∈ (Z/NZ)N−2 runs through the indices j 6∈ {α, β}.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. The case N = 2 can be verified directly from Theorem 1.1. Now suppose
that N ≥ 5. By Lemma 6.1, for every r, `α, `β ∈ Z/NZ, there exist NN−3 tuples ` ∈ (Z/NZ)N

such that NH(`) ≡ r (modN). So we may evaluate the inner sum in Theorem 1.1 as follows:∑
`∈(Z/NZ)N

NH(`)≡r (modN)

(
1 +

N2 − 2N [`α − `β]N + β − α+N (eβ − eα)

2 · 3
1
4

√
N

n−
1
4

)
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= NN−1

(
1 +
−N + β − α+N (eβ − eα)

2 · 3
1
4

√
N

n−
1
4

)
. �

7. Numerical examples

We provide numerical data supporting our statements. All computations were done in PARI/GP
and the plots were created in Sage [16, 17].

7.1. Numerical data for N = 2. We provide some numerical data for the parity bias problem.

Example. Let N = 2, {α, β} = {1, 2}, and K ∈ {0, 1}, corresponding to the claims in [2, 12]. The

numbers d
[K]
1,2;2(n), d

[K]
2,1;2(n) and their difference for 0 ≤ n ≤ 50 are given in Table 1 for K = 0 and

in Table 2 for K = 1. The differences d
[K]
1,2;2(n)− d[K]

2,1;2(n) are plotted for 0 ≤ n ≤ 100 in Figure 1.

For K = 0 we observe, in accordance with [2, 12], that d
[0]
1,2;2(n) > d

[0]
2,1;2(n) for n ≥ 20. For K = 1,

we note that the numbers for 13 ≤ n ≤ 29 agree with the claim in [2], Problem 6.1, i.e.,

d
[1]
1,2;2(n)− d[1]

2,1;2(n)

{
> 0 if n is even,

< 0 if n is odd,

whereas numerics suggests that for all n ≥ 29 we have d
[1]
1,2;2(n) − d[1]

2,1;2(n) < 0. This was checked

numerically up to n ≤ 10000 which took 5 minutes using PARI/GP on an Apple M1 Pro chip.

20 40 60 80 100

20000

10000

10000

20000

30000
K= 0
K= 1

Figure 1. d
[K]
1,2;2(n)− d[K]

2,1;2(n) for 0 ≤ n ≤ 100, K ∈ {0, 1}

Furthermore, the numbers (d
[K]
1,2;2(n)−d[K]

2,1;2(n))ne−π
√

n
3 are plotted in Figure 2 for 10 ≤ n ≤ 5000.

Supporting Corollary 1.3, the figure suggests that they converge to (−1)K2
7
2
−K3−

1
2 , independently

of n (mod 2).
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Figure 2. ( 1
n , (d

[K]
1,2;2(n)− d[K]

2,1;2(n))ne−π
√

n
3 ) for 10 ≤ n ≤ 5000, K ∈ {0, 1}

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

d
[0]
1,2;2(n) 1 0 1 1 1 2 1 4 2 6 3 9 5 12 9 17 14 22

d
[0]
2,1;2(n) 0 1 0 1 0 2 1 2 2 3 4 4 7 5 11 7 16 10

d
[0]
1,2;2(n)− d[0]

2,1;2(n) 1 −1 1 0 1 0 0 2 0 3 −1 5 −2 7 −2 10 −2 12

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

22 29 33 38 48 50 68 65 95 86 128 113 172 149 226 197 295

23 15 32 21 43 32 57 45 74 66 96 92 123 129 157 175 199

−1 14 1 17 5 18 11 20 21 20 32 21 49 20 69 22 96

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

260 379 342 485 449 613 587 773 762 967 987 1206 1269 1497 1623

239 253 316 320 419 406 544 514 704 652 898 825 1142 1045 1435

21 126 26 165 30 207 43 259 58 315 89 381 127 452 188

Table 1. Numerics for K = 0.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d
[1]
1,2;2(n) 0 0 1 0 1 0 1 1 1 2 1 4 1 6 2 9 3

d
[1]
2,1;2(n) 0 1 0 1 0 2 0 2 1 3 2 4 4 5 7 6 11

d
[1]
1,2;2(n)− d[1]

2,1;2(n) 0 −1 1 −1 1 −2 1 −1 0 −1 −1 0 −3 1 −5 3 −8

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

12 5 16 9 20 14 26 22 32 33 40 48 50 67 63 93 79 125

8 16 11 23 14 32 20 43 27 57 39 74 54 95 76 121 103 153

4 −11 5 −14 6 −18 6 −21 5 −24 1 −26 −4 −28 −13 −28 −24 −28

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

101 166 129 216 166 279 215 354 278 448 360 559 467 695 603

143 191 191 239 257 297 338 369 444 458 572 569 737 705 935

−42 −25 −62 −23 −91 −18 −123 −15 −166 −10 −212 −10 −270 −10 −332

Table 2. Numerics for K = 1.

7.2. Numerical data for N = 3. We give numerical data to illustrate Corollary 1.4.

Example. We consider N = 3 and K = 0. The first 17 values for d
[0]
1,2;3(n) and d

[0]
1,2;3(n), and their

difference are listed in Table 3. Figure 3 depicts the difference d
[0]
1,2;3(n)− d[0]

2,1;3(n) for 0 ≤ n ≤ 100.

Moreover, the numbers (d
[0]
1,2;3(n)−d[0]

2,1;3(n))ne−π
√

n
3 are plotted for 10 ≤ n ≤ 1000 in Figure 4. As

pointed out above, we observe that the asymptotics of the difference indeed depend on n (mod 3).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d
[0]
1,2;3(n) 1 0 0 2 1 0 4 2 0 8 4 1 14 8 2 24 14

d
[0]
2,1;3(n) 0 1 0 0 2 0 1 4 0 2 8 0 4 14 1 8 24

d
[0]
1,2;3(n)− d[0]

2,1;3(n) 1 −1 0 2 −1 0 3 −2 0 6 −4 1 10 −6 1 16 −10

Table 3. Numerics for N = 3, K = 0.
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Figure 3. d
[0]
1,2;3(n)− d[0]

2,1;3(n) for 0 ≤ n ≤ 100
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Figure 4. ( 1
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[0]
1,2;3(n)− d[0]

2,1;3(n))ne−π
√
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3 ) for 10 ≤ n ≤ 1000
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