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Examples of knots

Dean–Stasiak–Koller–
Cozzarelli 1985

Shakespeare, ∼1600
O time, thou must untangle this, not I.
It is too hard a knot for me t’untie.
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What is a mathematical knot?

Start with a piece of string, tie a knot in it, and glue the two ends together.

Definition
A knot is a simple closed curve in space.
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What is a mathematical knot?

Start with a piece of string, tie a knot in it, and glue the two ends together.

Definition
A knot is a simple closed curve in space, i. e. a curve with no self-intersections.
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What is a mathematical knot?

Start with a piece of string, tie a knot in it, and glue the two ends together.

Definition
A knot is a simple closed curve in space.

Some examples of (mathematical) knots:

The second one is the unknot.
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Low-dimensional topology and knot theory

Topology studies properties of spaces that are preserved under continuous deformations.
Low-dimensional topology focuses on spaces of dimension 4 and below.

We can continuously deform a cube into a ball. But we cannot continuously deform a ball into a torus.
Knot theory studies knots in 3-space and their properties preserved under continuous
deformations.
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Knot theory as a subarea of low-dimensional topology

Definition
Two knots are isotopic if there is a continuous deformation of one knot into the other, i. e. without
cutting the piece of string or passing it through itself.

(a) The unknot. (b) The trefoil knot.

(c) The figure-eight knot.

Figure: Examples of (isotopy classes of) knots.

Paula Truöl Introduction 8/



Why (k)not?

Motto: Knots help to understand 3- and 4-dimensional manifolds.

1) Knots provide blueprints for constructing 3-manifolds.

Theorem (Lickorish, Wallace 1960s)
Any oriented, closed, connected 3-manifold can be obtained from the 3-sphere S3 = R3 ∪ {∞} by
performing Dehn surgery on a collection of knots.

2) Knots can be used to reveal exotic structures of 4-manifolds.

Theorem (Moise, Stallings, Taubes, Gompf, Freedman 1960s–1980s)
For n 6= 4, there is a unique smooth structure on Rn. In contrast, there are uncountably many
smooth structures on R4. This can be shown using the existence of topologically, but not smoothly
slice knots.
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Slice knots and knot concordance
Motto: A slice knot is the next best thing to an unknot in 4 dimensions.

Definition
A knot in S3 is slice if it bounds a smoothly embedded disk in B4, the 4-ball bounded by S3.

x

y,z

w

x

y,z

w

Proposition
A knot is isotopic to the unknot if and only if it bounds a disk in S3.

Theorem (Piccirillo 2020)
The Conway knot is not slice.
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Slice knots and knot concordance

Motto: Concordance generalizes isotopy between knots to dimension 4.

Definition
Two knots K and J in S3 are concordant if they cobound a smoothly embedded cylinder in
S3 × [0, 1].

K × {0} J × {1}

C = S1 × [0, 1] S3 × {1}S3 × {0}

Concordance is an equivalence relation. The concordance group is the (countable abelian) group

C = ({concordance classes of knots}, connected sum) (Fox–Milnor 1966).

Slice knots are concordant to the unknot and represent the identity element.
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Slice knots and knot concordance
Motto: Concordance generalizes isotopy between knots to dimension 4.

Definition
Two knots K and J in S3 are concordant if they cobound a smoothly embedded cylinder in
S3 × [0, 1].

K × {0} J × {1}

C = S1 × [0, 1] S3 × {1}S3 × {0}

Proposition
Let K and J be knots in S3. Then:
• K and J are isotopic knots. ⇒ K and J are concordant.
• K and J are isotopic knots. : K and J are concordant. Example: Any nontrivial slice knot.
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Knots as closures of braids

Theorem (Alexander 1923)
Every knot can be represented as the closure of an n-braid for some n ≥ 2.

Definition
An n-braid is a collection of n non-intersecting, never-returning paths in 3-space
connecting n points to other n points.

β β
closure

Figure: A 3-braid.
Paula Truöl Introduction 13/



Knots as closures of braids

Isotopy classes of n-braids form the braid group Bn on n strands with presentation

Bn = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i− j| ≥ 2〉 (Artin 1925).

(a) The generator σ1
of B2 = 〈σ1〉.

(b) The generators σ1
and σ2 of B3.

=

(c) The braid relation
σ1σ2σ1 = σ2σ1σ2 in B3.

=

(d) The relation
σ1σ3 = σ3σ1 in B4.
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Strongly quasipositive knots

Definition (Rudolph)
An n-braid β is strongly quasipositive if it is a product of certain conjugates of the positive Artin
generators σj of Bn, namely the positive band words σi,j , where

σi,j = (σi · · ·σj−2)σj−1 (σi · · ·σj−2)−1 (= ωi,jσj−1ω
−1
i,j ) for 1 ≤ i < j ≤ n,

i. e. β =
m∏
k=1

σik,jk for 1 ≤ ik < jk ≤ n, 1 ≤ k ≤ m.

1 i nj

Figure: The positive band word σi,j .
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Strongly quasipositive knots
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Figure: The positive band word σi,j .
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Strongly quasipositive knots

Definition (Rudolph)
An n-braid β is strongly quasipositive if it is a finite product of certain conjugates of the positive Artin
generators σi of Bn, namely the positive band words σi,j , where

σi,j = (σi · · ·σj−2)σj−1 (σi · · ·σj−2)−1 for 1 ≤ i < j ≤ n,

i. e. β =
m∏
k=1

σik,jk for 1 ≤ ik < jk ≤ n, 1 ≤ k ≤ m.

Definition (Rudolph)
A knot is strongly quasipositive if it is the closure of a strongly quasipositive n-braid for some n ≥ 2.

Paula Truöl Strongly quasipositive knots are concordant to infinitely many such knots 18/



Strongly quasipositive knots

Example
The 3-braid β = σ1σ1 σ1σ2σ

−1
1︸ ︷︷ ︸

=σ1,3

σ2 is strongly quasipositive. Its closure is a strongly quasipositive knot.

(a) The 3-braid β. (b) Its closure. (c) The surface F (β).

Figure: Each strongly quasipositive braid β has an associated canonical Seifert surface
F (β).
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The slice-ribbon conjecture and a conjecture by Baker

Recall that a knot is strongly quasipositive if it is the closure of a strongly quasipositive n-braid.

Definition
A knot K in S3 is fibered if there exists a locally trivial fiber bundle S3 \K → S1 whose fibers are the
interiors of Seifert surfaces for the knot.

Conjecture (Baker 2016)
If two strongly quasipositive, fibered knots are concordant, then they are isotopic.

Theorem (Baker 2016)
Slice-ribbon conjecture⇒ Baker’s conjecture.
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The slice-ribbon conjecture and a conjecture by Baker

Theorem (Baker 2016)
Slice-ribbon conjecture⇒ Baker’s conjecture.

Slice-ribbon conjecture (Fox 1962)
Every slice knot is ribbon.

A knot is slice if it bounds a smoothly embedded disk in B4. A knot is ribbon if the disk has only local
minima and saddles.

x

y,z

w x

y,z

w
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The slice-ribbon conjecture and a conjecture by Baker

Conjecture (Baker 2016)
If two strongly quasipositive, fibered knots are concordant, then they are isotopic.

Theorem (Baker 2016)
Slice-ribbon conjecture⇒ Baker’s conjecture.

Slice-ribbon conjecture (Fox 1962)
Every slice knot is ribbon.

Remark (Hedden)
Baker’s conjecture is not true without the fiberedness assumption.
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Theorem A

Conjecture (Baker 2016)
If two strongly quasipositive, fibered knots are concordant, then they are isotopic.

Theorem A (T. 2022)
Every non-trivial strongly quasipositive knot is concordant to infinitely many pairwise non-isotopic
strongly quasipositive knots.

Remark
There is only one strongly quasipositive, slice knot: the unknot, since for strongly quasipositive knots,
the genus and the smooth 4-genus coincide (Bennequin 1983, Rudolph 1993).

Reformulation of Theorem A:
Every concordance class in C of a non-trivial strongly quasipositive knot contains infinitely many
strongly quasipositive knots.
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More context on Theorem A

quasipositive
strongly quasipositive

positive

algebraic

Figure: Notions of positivity.

Theorem A (T. 2022)
Every concordance class in C of a non-trivial strongly quasipositive
knot contains infinitely many strongly quasipositive knots.

Theorem (Baader–Dehornoy–Liechti 2017)
Every concordance class in C contains at most finitely many
positive knots.

Theorem (Litherland 1979)
Every concordance class in C contains at most one algebraic knot.

Example: Torus knots

Tp,q = ̂(σ1σ2 . . . σp−1)q

= Vf ∩ S3 ⊆ C2 for f(x, y) = xp − yq ∈ C[x, y].
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More context on Theorem A

quasipositive
strongly quasipositive

positive

algebraic

braid positive

fibered

Question
Are there only finitely many strongly quasipositive, fibered knots in each concordance class?

Question
Is there at most one (braid) positive knot in each concordance class?
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Idea of the proof

Theorem A (T. 2022)
Every non-trivial strongly quasipositive knot is concordant to infinitely many pairwise non-isotopic
strongly quasipositive knots.

Idea of the proof:
Let K = ∂F (β) be a non-trivial knot for a strongly quasipositive braid β =

∏m

k=1 σik,jk . Take a
nontrivial slice knot C with TB(C) = −1, e.g. C = m (946).

F (β)

A(C,−1)

C

F ′

C

The surface F ′ is obtained from F (β) by tying the knot C into the band Bσi1,j1
of F (β).

Claim: ∂F ′ is a strongly quasipositive knot that is concordant, but not isotopic to K.
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On the concordance of positive 3-braid knots

Question
Is there at most one (braid) positive knot in each concordance class?

We focus on braids on 3 strands.
Definition
A 3-braid β is positive if β = σi1 · · ·σim for some i1, · · · , im ∈ {1, . . . , n− 1} (no inverses σ−1

j ).

Definition
A knot is a positive 3-braid knot if it is the closure of a positive 3-braid.

(a) Generators σ1 and σ2 of B3.

=

(b) Braid relation σ1σ2σ1 = σ2σ1σ2.
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On the concordance of positive 3-braid knots

Let υ : C → Z denote the smooth concordance invariant upsilon from knot Floer homology
(Ozsváth–Stipsicz–Szabó 2017) such that
• υ : C → Z is a group homomorphism, i. e. υ(K#J) = υ(K) + υ(J) for all knots K and J ,
• |υ(K)| ≤ g4(K) = min{g(F ) | F ↪→ B4 with or. boundary ∂F = K in S3 = ∂B4}.

Theorem B (T. 2021)
Let β = ∆2`σ−p1

1 σq1
2 σ−p2

1 σq2
2 · · ·σ

−pr
1 σqr

2 ∈ B3 for some ` ∈ Z, r ≥ 1 and pi, qi ≥ 1 for i ∈ {1, . . . , r},
where ∆2 = (σ1σ2)3. Suppose that K = β̂ is a knot. Then

υ(K) =

r∑
i=1

(pi − qi)

2 − 2`.
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On the concordance of positive 3-braid knots

Theorem B (T. 2021)
Let β = ∆2`σ−p1

1 σq1
2 σ−p2

1 σq2
2 · · ·σ

−pr
1 σqr

2 ∈ B3 for some ` ∈ Z, r ≥ 1 and pi, qi ≥ 1 for i ∈ {1, . . . , r},
where ∆2 = (σ1σ2)3. Suppose that K = β̂ is a knot. Then

υ(K) =

r∑
i=1

(pi − qi)

2 − 2`.

Corollary C (T. 2021)
Let K be a positive 3-braid knot. Then the minimal r such that K is the closure of

α = σp1
1 σq1

2 σp2
1 σq2

2 · · ·σ
pr
1 σqr

2

for integers r, pi, qi ≥ 1 is r = g(K) + υ(K) + 1.
Here, g(K) = min{g(F ) | F ↪→ S3 with or. boundary ∂F = K}.
If K and J are concordant positive 3-braid knots, then this minimal r is the same for both K and J .
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On the concordance of positive 3-braid knots

Corollary C (T. 2021)
Let K be a positive 3-braid knot. Then the minimal r such that K is the closure of

α = σp1
1 σq1

2 σp2
1 σq2

2 · · ·σ
pr
1 σqr

2

for integers r, pi, qi ≥ 1 is r = g(K) + υ(K) + 1.
If K and J are concordant positive 3-braid knots, then this minimal r is the same for both K and J .
Here, g(K) = min{g(F ) | F ↪→ S3 with or. boundary ∂F = K}.

Question
Is there at most one (braid) positive knot in each concordance class?
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More pictures for sketch of proof of Theorem A – 1

Figure: Front projection of Legendrian representative of C = m (946) with TB(C) = −1.

Figure: Strongly quasipositive annulus A(C,−1) for C = m (946).
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More pictures for sketch of proof of Theorem A – 2

F (β)

A(C,−1)

C

F ′

C

C

C

Figure: The surface F ′ is obtained from F (β) by tying the knot C into a band Bβ
corresponding to the positive band word σi1,j1 of β.
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More pictures for sketch of proof of Theorem A – 3

Figure: Quasipositivity of the surface F ′.
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Picture for sketch of proof of Corollary C

Figure: Schematic of a cobordism between knots K = β̂ for β = ap1bq1 · · · aprbqr , r, pi, qi ≥ 1,
i ∈ {1, . . . , r} and Jε = T2,

∑r

i=1
pi+εp

#T2,q1+ε1#T2,q2+ε2# . . .#T2,qr+εr
realized by

r − 1 + ε saddle moves. This shows υ(K) ≤ −g(K) + r − 1.
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Topoisomerases - 1

Paula Truöl On the concordance of positive 3-braid knots 37/



Topoisomerases - 2
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Topoisomerases - 3
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3-braid knots with maximal 4-genus – 1

→

→

≈

⋆

⋆

Figure: abxabx� ∅ using one twist on four strands, followed by another twist on two
strands, at the locations marked ?.
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3-braid knots with maximal 4-genus – 2

→
≈

⋆

⋆

→

≈
≈

abxa2bx γ

Figure: How to turn the braid abxa2bx (top left) into the tangle γ (top right) using one twist on
four strands, followed by another twist on two strands, at the locations marked ?.
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