Paula Truöl

Exercise Sheet 2

- 1. (a) Find a handle decomposition for any closed orientable surface.
 - (b) Draw sketches of handle cancellations of a (k-1)- and a k-handle for any $k \in \{1, ..., n\}, n \in \{2, 3\}$. Indicate in your sketches also the attaching spheres, the belt spheres, the cores, the cocores and the attaching regions of the handles.
- 2. (a) Describe a way to compute the fundamental group of a manifold from a given handle decomposition.
 - (b) The fundamental group of any compact manifold is finitely presented. Show that for any $n \ge 5$, we get any finitely presented group as the fundamental group of a closed orientable *n*-manifold.
 - (c) Show that, on the other hand, not every finitely presented group is the fundamental group of a closed orientable 3-manifold. Groups which occur as the fundamental group of a closed orientable 3-manifolds are called 3-manifold groups.

Hint: Let $\langle g_1, \ldots, g_n | r_1, \ldots, r_m \rangle$ be a finite presentation of a group *G*. We call n - m the deficiency of this presentation and we define the *deficiency* of *G* as the maximum over the deficiencies of all finite presentations of *G*. Show that every 3-manifold group has non-negative deficiency and find (without proof) a group with negative deficiency.

- 3. Consider the 3-torus $T^3 = S^1 \times S^1 \times S^1$.
 - (a) Show that we can obtain T^3 from the cube $I \times I \times I$ by identifying opposite sides.
 - (b) Describe a handle decomposition of T^3 (as simple as possible).
 - (c) Draw a planar Heegaard diagram of T^3 .
- 4. Two homeomorphisms $g_0, g_1: X \to X$ are *isotopic* if there exists a continuous map $F: X \times [0, 1] \to X$ such that $f_t := F(\cdot, t)$ has the following properties: f_t is a homeomorphism for every $t \in [0, 1]$, $f_0 = g_0$ and $f_1 = g_1$. Prove the following three statements.
 - (a) Every homeomorphism $f: S^{n-1} \to S^{n-1}$ extends to a homeomorphism $F: D^n \to D^n$ for $n \ge 1$.
 - (b) (Alexander trick) If a homeomorphism $f: D^n \to D^n$ restricts to the identity $\operatorname{id}_{S^{n-1}}$ on $S^{n-1} = \partial D^n$, then f is isotopic to id_{D^n} .

Hint: Let f occur in a smaller and smaller ball and extend by the identity.

(Probably you will also arrange that the isotopy f_t satisfies $f_t|_{S^{n-1}} = \mathrm{id}_{S^{n-1}}$ for every $t \in [0, 1]$, i.e. f and id_{D^n} are isotopic rel boundary.)

(c) Any manifold obtained by gluing two *n*-balls D^n is homeomorphic to S^n .