Exercise Sheet 3

Exercise 2 is a bonus exercise.

- 1. Let p, q, r be integers such that $gcd(p,q) = 1 = gcd(p,r), p \neq 0$. Show that there exist the following diffeomorphisms:
 - (a) $L_{p,q} \cong_{C^{\infty}} L_{p,q+kp}$ for all $k \in \mathbb{Z}$,
 - (b) $L_{p,q} \cong_{C^{\infty}} L_{p,r}$ if $r \equiv \pm q \pmod{p}$ and
 - (c) $L_{p,q} \cong_{C^{\infty}} L_{p,r}$ if $r \equiv \pm q^{-1} \pmod{p}$.
- 2. (a) Show that the homology $H_*(M; \mathbb{Z})$ of a closed, connected, orientable 3-manifold M is determined by its fundamental group $\pi_1(M)$. Note: This requires some knowledge in algebraic topology. A (sketch of) proof can be found e.g. in Proposition 9.1.1 in Martelli's An Introduction to Geometric Topology.
 - (b) Use (a) to determine the homology groups of lens spaces. Bonus: Determine the homology groups of your favorite closed, orientable 3-manifold.
 - (c) Show that if M is additionally simply-connected, then $H_i(M;\mathbb{Z}) \cong H_i(S^3;\mathbb{Z})$ for all i. A closed, connected, orientable 3-manifold M with $H_i(M;\mathbb{Z}) \cong H_i(S^3;\mathbb{Z})$ for all i is called a *homology sphere*.
- 3. Let M be a closed, connected, orientable 3-manifold.
 - (a) Find a presentation of $\pi_1(M)$ in terms of a Heegaard splitting of M.
 - (b) Conclude that $\operatorname{rk}(M) \leq g(M)$, where $\operatorname{rk}(M)$ denotes the rank of $\pi_1(M)$, the minimal number of elements needed to generate $\pi_1(M)$.
 - (c) Show that $g(T^3) = 3$.
- 4. Show that the Heegaard genus of $\Sigma_g \times S^1$ is 2g + 1.

(*)