Good of the paper E. Adam type houndary theory, e.g. E Land neber excut.

or Ext nedword Hopf algebroid Str., TXX to a commodule of Ext.

Want to construct an derived so - cet of spectra, where the demostran is performed with the E-hamiltony.

diget of this or integry: Synthetic spector (based on E) exkilorits boths the aspects of sould hometopy theory and homological algebra of comodules

Det A Synthetic Spectra based on E is a Spherical sheaf of Spectra on the on-category Spt P of finite Ex-projective spectran for projective spectran f

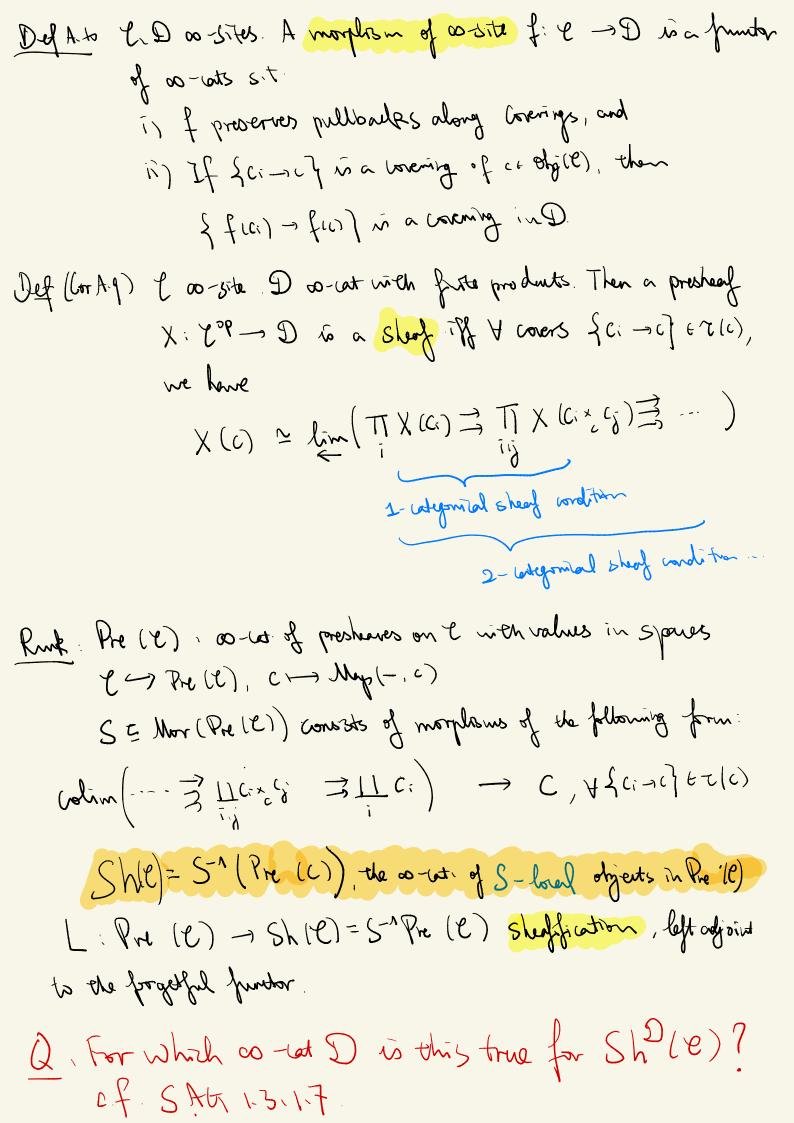
Goal today: A bot of prerequiétes on spherical shaves on colditre as sites. § A.1. 2.1. 2.2. 2.3 of the main reference.

& trotherdreck pretopology, shower ok

- i) If d > c is an equilalence, then {d>c} is a cover of c
- ii) If {Ci > c} in a week and d > c & Mor(e), then

 I pullback dx ci, and {dxci c} in a cover of c
- af combastes of cie are cones, the the representation

Det An oo-Sile is on oo-wheyong equipped with Grothandi-uk pilo pology.



Prop A.11 Let f. e -> D morphon of 00-sites. The included map
for Pre (e) > Pre (D) indues an adjunction Pre (e) Shill
fa: Shie) = Ship) + * Preshaires /sh
$f_{i} = 1 > 1$
Espherical sheares on soldifive so weapones
Dof loo Lat high finte sums. Doo-lat vien finte products. A problem of X: eop -D is spherical of it takes sums to products.
Not Pres(e) Shs(e)
Lemail & additive as not Then Prez (8) is also additive.
Lemail ℓ additive ∞ -test. Then $Pre_{\Sigma}(\ell)$ is also additive. In part. for any $\chi \in Pre_{\Sigma}(\ell)$, χ factors through $M_{6\infty}^{gr}(\ell)$
Ref Geprer-broth-Nteslans, Cop X 3x
Universality and Multipliative I Ala (8) in infinite loop spaces
thirtersality and Multipliative Lago (S*) in infinite loop spaces of infinite loop space would the Eno
Def 23 An additive as -site is a Small as -site and an additive as-lest
Where every lover consists of a single map, i.e. # C/X) = 1 for
every object X.
A morphon f. C-D of additive as estos is a morphon
of 00-5ites and a morphism of colottere 00-cots simularishy

Prop 25 l be additue ao 5 to. The sheaffvation L: Pre(e) -> Sh (e)
fundors take spherical problemes to spherical sheares. This
State went also holds for hypercomplete shafification.
Pf Revall that L is the boralisation function
1 Pales = Calpales
where S consists of morphisms:
Lim (3 dx d 3 d) -> C, 4 {d-1} trla)
of the second of the second of
+ geometric realisation of spherical shares are is spherical
~ (S = Wer (fre I (s))
+ (L preserves fronte produit (L is left exact)
Ly L takes sphemial presheaves to S-boal spherelad sheaves. The 22
Cor2.6 C additive as -site. Lzi Rez(e) -> ShIle) presents ShIle) as
an accessible, left exact boldisation of Prez (C). In particular,
Sh_(E) is presentable. The statem also holds for hypercomplete
cheand.
Sketch: Anessible: Sh_le) = Sh le) () Prez (e) + HTT 5 WR 10 + 5.5.1.
Lleft exact ~> Lz left exact

Thun 26 (Resopration 8hm of spherical sheaves) & additive as-site: A spherical preshed X is a (spherical) sheaf iff the following holds: (*) If F -> B -> A fib seg in & with B -> A covering, then $X(A) \rightarrow X(B) \rightarrow X(F)$ is a fibre sequence in J_* Sketch: - Assume X satisfier (4), want to show X(A) -> X(B) = X(B×B) = in a limit diagram. Consider F:= holis -> B -> A

N-th to n-th tems (1) (1) (1) (1) (2) (2) (3) (3) (4)1 1 X(A) -> X(BXB) Z X(BXBXB) Z - ZX(BXXXB) Z Lin X (Fxith) Sim X (B) - lin X (Ax x A) ~ wes: X take values in connective spection (Lem 2.1) X is sphereful presheares. X(F) = X(F) + X(F) = Completed object with extra degeneracies

Compute limit of the cosimplical space via BKSS is contradible.

Cornerse F-3B-3A Libra seq in C, X spherical sheaf Warrit X(A)-> X(B)-> X(F) fibseq in Sx Country F -> B -> B -> B -> A _ huit dropa $\chi(A) \longrightarrow \chi(B) \stackrel{?}{\rightarrow} \chi(B\chi B) \stackrel{?}{\rightarrow} \cdots$ Enough history each whom is a fito seg. Fx -- x F -> (BxB) xB · xB (BxB) -> Bx Bx -- xx B AX--XD with WIB-BXB or this is split exact file seq X Sphemial no X preserves Sphit exact sequences Cor 29 & additive as -site. Sh I (e) is closed under fittened colinit. In particular fittered af spherical sheaves are computed level use.

Some elementary results on of fundomality of Sho (E)

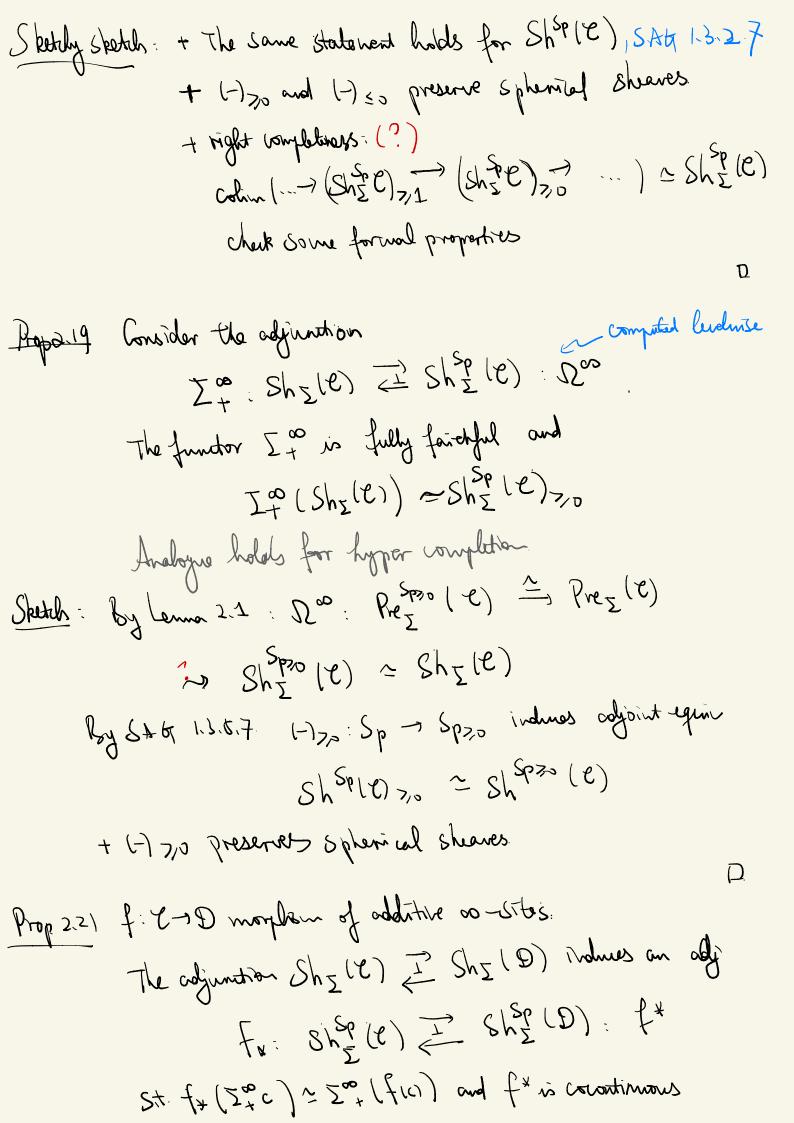
Prop. 2.10 J. P - D morphism of additive as - siter. Then the induced adjunction fx: Shie) = Shie) f* restores to one on Spherical sheaves thologue result holds in hypercomplete case.

Hint: use HTT 5.5.8.14 preserves small columnts.

f+: Sh_ (D) - Sh_ LE) is worthward. Analogue holds in Kop 2.11 hyper complete case Hint: we Prop 219

fx preserves in corrective and in-transacted offs. (forlater) Prop 2.12

& Sheares of Spectra
Prop 213 The 00-lat Sh_ (e) is the stablisation of Sh_ (e), thus (HA 1444) a presentable stable so-lat.
thus (HAIKKY) a presentable stable so - let.
Araboque holds in hyper complete call.
Spotch: Fout: Shop(e) is stablished of Shie) (SAG. 1.3.2.2)
Thus Sh(e) & Sh(e) &
Thus Shipper) = lim (> Shie) * Ps Shie) *
x + Shy(e) iff Doo-n x + Shy(e), since being sphemial
hand hand hand hand hand hand hand hand
combe cherked on fluter shames. Shiple) = lim (Shiple) = Shiple)
D
Def 215 - X + Sh & le). The n-th homotopy group the X of X is defined as
Trx:= Shuffiation o (C >> TrxX(C)) & Short (X)
- X is constre if ToX =0 for não Shop(e)>0
- X in coronartive if Doo X is a discrete sheef of spaces $Sh_{\Sigma}^{P}(e)_{\epsilon_{0}}$
Ruk Trix in spherical for all n.
Box 211 (SP (8) S/SP (8) determines a hight complete
to the spine on Sp 2 (6) Fot 12:10/ In July 10:10
- this +- structure is compatible with filtered colonits; $Sh_{\frac{\pi}{2}}(e)_{\epsilon_0}$ is closed under fittered colonit. - I conorial equivalence $Sh_{\frac{\pi}{2}}(e)^{e} \sim Sh_{\frac{\pi}{2}}(e) \sim Sh_{\frac{\pi}{2}}(e)$
closed under fittered colorint.
- 3 conorial equipoleme Shop (e) ~ Shom (e) ~ Shop (e)



Purk 222 ft preserves bolls write and Coconnective part of the

& Sym moidal Structure on ShI(e) and ShE(e)

Prop 2.24 & Sym man 00-6t. Then Rele admits a unique Sym man Str. S.t. & Co Prele) in Sym monoidal and S: Rele) O Prele) - Prele) preserves colimits in each variable.

Pt. H.A. 481 Wing Day Constation

Q: When does Day convolution compatithe with the budisation Rele) - Shele)?

Def223 An excellent 00-cite e is an additive 00-cite equipped with a sym mon str st all object admits dual and to toball),

the functor

- 8 &: e - e takes covers to covers

From now on & exallent so - site

Thu 2.27 The Day Consolition Symmon Str. on Phe (e) preserves

Lx-equivalence in both variables where Lx: Pre(e) -> X

with Xt { Sh Let (e), Sh E (e), Sh (e), Sh (e), Sh (e), Sh (e)

with Xt adjoint of the inclusion X -> Pre(e)

Cor2.28 AU of XI above admits a unique sym mon Str. which
preserves colourt in each variable, and
Lyon Pele) Lx X
in sym mys in
Pf Ht. 2-2-1-9
Prop 2.29 Sh & (P) colmits Sym monoidal structure which
is cocontinuous in each variable and
Z + : Shz(e) -> Shz(e)
is sym monordal. I roboque rebut hold in hypersombuous
Sketch: PL: 00-lat of presentable 00 - lats and wrentiments fundors
Fact: Alg = (PL) = Sym monoidh presentable 00 tots Sit & 10
is constituent in each variable
and Spt Alg En (Pr)
H.A. 4.8.218 Sh_[(e) @ Sp " in Stablization of Sh_[(e))