
MORAVA K-THEORY HOMOLOGY OF K(Z/ pjZ,m)

YUQING SHI

This is the my talk notes at the workshop MIT Talbot 202One on “Ambidexterity
in Chromatic Homotopy Theory”. In this talk, I’ll show Ravenel–Wilson’s calculation
of K(n)∗K(Z/ pjZ,m), where K(n) denotes the n-th Morava K-theory spectrum at an
odd prime p and K(Z/ pjZ,m) denotes the Eilenberg–MacLane space with non-trivial
homotopy group Z/ pjZ at degree m ≥ 0. I’ll present the computation using the original1
approach as in [RW80]. Let us first recall the rich structure of K(n)∗ (K(Z/ pjZ,m)).

Situation. We fix an odd prime p throughout the talk. Denote by K(n) the Morava
K-theory with K(n)∗

∼= Fp[v±1
n ] and deg(vn) = 2pn − 2.

1. Algebra structures of K(n)∗(K(Z/ pjZ),m)

First, let us recall the structure of K(n)∗Km with Km := K(Z/ pjZ,m).

Proposition 1.1.
i) For fixed j ≥ 0 and m ≥ 0, the diagonal map of Km induces a (cocommutative)

K(n)∗-coalgebra structure on K(n)∗Km. We denote its comultiplication by

ψm : K(n)∗Km → K(n)∗Km ⊗K(n)∗
K(n)∗Km.

ii) For fixed j ≥ 0 and m ≥ 0, K(n)∗Km is an abelian group object in coAlgK(n)∗
,

where the “group addition” is induced by the H-space structure of Km, and is denoted
by

∗m : K(n)∗Km ⊗K(n)∗
K(n)∗Km → K(n)∗Km.

In other words, K(n)∗Km is a bicommutative K(n)∗-Hopf algebra
iii) For fixed j ≥ 0, the cup product pairing Ki×Km → Ki+m induces an “multiplication”

◦i,m : K(n)∗(Ki)⊗K(n)∗
K(n)∗Km → K(n)∗(Ki+m),

for i,m ≥ 0. This multiplication is (graded) commutative, unital and distribute
over ∗. �

Notation 1.2. Denote by HopfAlgK(n)∗
the category of (bicommutative) K(n)∗-Hopf

algebras.

Proposition 1.3. For fixed j ≥ 0, the collection ⊕m≥0K(n)∗Km is a graded commutative
monoid in HopfAlgK(n)∗

, also known as a K(n)∗-Hopf ring. �

Recall from the previous lecture that HopfAlgK(n)∗
is equipped with a symmetric

monoidal structure, with tensor product denoted by �. Furthermore, we can consider
the subcategory HopfAlgK(n)∗,p

j of K(n)∗-Hopf algebras annihilated by multiplication by
pj, for every j ≥ 0. The subcategory HopfAlgK(n)∗,p

j inherits the symmetric monoidal
product � and has symmetric monoidal unit K(n)∗[Z/ pjZ] = K(n)∗K0.
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1An alternative proof is presented in [HL, Section 2]
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Corollary 1.4. For fixed j ≥ 0, the object ⊕m≥0K(n)∗Km is contained in HopfAlgK(n)∗,p
j .
�

The main goal of the talk is to give a sketch of the following theorem.

Theorem 1.5 (Ravenel–Wilson). For fixed j ≥ 0, the Hopf ring ⊕m≥0K(n)∗Km is the free
K(n)∗K0-Hopf ring on the Hopf algebra K(n)∗K1, i.e. we have

⊕m≥0 K(n)∗Km = K(n)∗K0 ⊕K(n)∗K1 ⊕ (K(n)∗K1 �Σ2 K(n)∗K1)⊕ · · · . (1.1)

Remark 1.6. In the situation of the above theorem, we have a(i) ◦ a(j) = −a(j) ◦ a(i) for
algebra generators a(i), a(j) ∈ K(n)∗K1, see [RW80, Lemma 9.1, Lemma 11.2]. Thus,
⊕m≥0K(n)∗Km becomes the exterior K(n)∗K0-Hopf ring generated by K(n)∗K1.

2. Interpretation in terms of Dieudonné modules

Before proving Theorem 3.1, let me first explain how to translate it in the language of
Dieudonné modules, as stated in the previous lecture. For this purpose, we need to work
with perfect fields.

Definition 2.1. Define the cyclic graded Morava K-theory K(n)t(−) := K(n)t(−) where
t ∈ Z/ (2pn − 2)Z is the reduction of t ∈ Z. Note that we have K(n)∗

∼= Fp.

Recall from Lecture 10 that the Dieudonné ring DFp is isomorphic to Zp[F, V ]/ (FV = p)
where F denotes the Frobenius and V denotes the Verschiebung. A Dieudonné module
over Fp is a module over the ring DFp . Recall also the symmetric monoidal functor DM+

(Lecture 11) which assigns a Fp-Hopf algebra a Dieudonné module.

Notation 2.2. Denote the Hopf algebra K(n)∗(K(Z/ pjZ), 1) by Hj and the associated
Dieudonné module by Dj.

Construction 2.3. We can apply DM+ to both sides of formula (1.1) and obtain

DM+

(
⊕m≥0K(n)∗Km

)
= Z/ pjZ⊕Dj ⊕Dj �Σj Dj ⊕ · · · .

Denote the right hand side by ∧�Dj, the free Dieudonné algebra generated by Dj. In
particular, we have DM+

(
K(n)∗Km

)
∼= ∧m�Dj =

(
D�mj

)
Σm

, for m ≥ 0.

Therefore, it suffices to study the Dieudonné module structure on Dj and on ∧�Dj,
in order to understand the Dieudonneé module DM+ (K(n)∗Km) associated to the Hopf
algebra K(n)∗Km. To understand Dj, we consider the the Hopf algebra isomorphism

H∨ := lim←−K(n)
∗ (

K(Z/ pjZ, 1)
) ∼= K(n)

∗
(K(Qp/Zp, 1)) ∼= K(n)

∗
K(Z, 2),

where
i) the second isomorphism is induced by Qp/Zp ∼= lim−→j≥0

Z/ pjZ, and
ii) the third isomorphism follows from the fact that K(Qp/Zp, 1) and K(Z, 2) are

K(n)-local equivalent2.
Since K(n) is complex oriented, we know that H∨ ∼= K(n)∗[[t]]

∼= Fp[[t]]. Note that the
notation H∨ means the dual of the K(n)∗-Hopf algebra H := K(n)∗ (K(Z, 2)).

Proposition 2.4. As a Zp-module, we have DM+(H) ∼= Zp[V, F ]/ (FV = p, V n−1 = F ).
2One sees this by considering the long exact sequence of K(n)-cohomology associated fibre sequence

K(Q, 1)→ K(Q/Z, 1)→ K(Z, 2).
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Corollary 2.5. For fixed j ≥ 0, the Dieudonné module Dj = DM+(Hj) is isomorphic to
Z/ pjZ[V, F ]/ (FV = p, V n−1 = F ). �

Sketch of Proposition 2.4. Over the field Fp, there is a one-to-one correspondence

{Formal groups of finite height} 1:1←→ {Dieudonné modules of finite type}
f 7→M

Frobenius 7→ Verschiebung
height 7→ rank

dimension 7→ length of the moduleM/VM

One can check that the characteristic polynomial of Frobenius, height and dimension
of Spf H∨ matches the characteristic polynomial of Verschiebung, rank and length of
the quotient module of Zp[V, F ]/ (FV = p, V n−1 = F ). Furthermore, Spf H∨ is uniquely
determined uniquely by its height and the characteristic polynomial of the Frobenius, since
it is of dimension 1. For more details, see [BL07, Section 9]. �

Now it remains to study the Frobenius and Verschiebung action on ∧�Dj (Construc-
tion 2.3).

Notation 2.6. As a free Z/ pjZ-module, Dj is generated by αn−1 := 1, αn−2 := V , . . . ,
αn−k−1 := V k, . . . , α0 := V n−1.

Proposition 2.7. We have
i) V α0 = pαn−1,
ii) V αi = αi−1, for i ≥ 1, and
iii) Fαi = V n−1αi, for i ≥ 0.

Proof. We use the relations V F = p and V n−1 = F . �

Recall from Remark 1.6 that ∧�Dj is the exterior algebra generated by Dj. In other
words, ∧�Dj = ⊕nm=0∧m�Dj. Considering the Z/ pjZ-exterior algebra ∧Dj with Dj the
free Z/ pjZ-module underlying the Dieudonné module Dj.

Proposition 2.8. The exterior algebra ∧Dj admits a DFp-module structure where V and
F acts on ∧mDj, for every m ≥ 0, via the formulas

V (αi1 ∧ αi2 ∧ · · · ∧ αim) = V (αi1) ∧ · · · ∧ V (αim),

F
(
V (αi1 ∧ · · · ∧ αis) ∧ αis+1 ∧ · · · ∧ αim

)
= αi1 ∧ αi2 ∧ · · · ∧ αis ∧ F (αis+1 ∧ · · · ∧ αim),

for every tuple (i1, i2, . . . , im) ∈ Nm with 0 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n.

Sketch. We can construct the Verschiebung and Frobenius actions inductively using Propo-
sition 2.7 and the formulas

V (αi1 ∧ αi2 ∧ · · · ∧ αim) = V (αi1 ∧ αi2 ∧ · · · ∧ αim−1) ∧ αim−1,

F (αi1 ∧ αi2 ∧ · · · ∧ αim) = αi1+1 ∧ F (αi2 ∧ αi3 ∧ · · · ∧ αim).

To check that it is a well-defined Dieudonné module, see [BL07, Section 10]. �

It turns out the Dieudonné module structure on ∧�Dj “coincide” with the one on ∧Dj.

Theorem 2.9. For any 1 ≤ m ≤ n, there are isomorphisms of Dieudonné modules

∧0Dj → ∧0
�Dj, 1→ 1,

∧mDj → ∧m�Dj, αi1 ∧ · · · ∧ αim 7→ αi0 ◦ · · · ◦ αim .
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3. Proof of the Theorem 3.1

Let me first recall the statement of the theorem, note that Km = K (Z/ pjZ,m).

Theorem 3.1 (Ravenel–Wilson). For fixed j ≥ 0, the Hopf ring ⊕m≥0K(n)∗Km is the free
K(n)∗K0-Hopf ring on the Hopf algebra K(n)∗K1.

So, to prove the theorem, we need to show that
i) the Hopf ring ⊕m≥0K(n)∗Km is generated by K(n)∗K1

ii) The relations in the Hopf algebra K(n)∗Km, for every m ≥ 0, are a consequence of
axioms of the Hopf ring and the Hopf algebra structure of K(n)∗K1.

We will demonstrate the ideas of the proof of the theorem in the case where j = 1. The
proofs for the j ≥ 2 cases are exactly the same, see [RW80, Section 11, 12].

Situation 3.2. In the rest of the text, we set Km := K (Z/ pZ,m). Recall that p is a fixed
odd prime.

3.1. The Hopf algebra K(n)∗K1. As a first step, we would like to study the K(n)∗-Hopf
algebra K(n)∗K1. Note that the Eilenberg–MacLane space K1 fits into a fibre sequence

K1
δ−→ K(Z, 2)

×p−→ K(Z, 2). (3.1)

We will use the Hopf algebra structure of K(n)∗K(Z, 2) to obtain the one on K(n)∗K1.
Recall that CP∞ ' K(Z, 2).

Proposition 3.3.
i) As K(n)∗-algebras, we have K(n)∗CP∞ ∼= K(n)∗[[c]] with deg c = 2.
ii) As K(n)∗-modules, we have K(n)∗CP∞ ∼= K(n)∗[β0, β1, . . . ] with deg βi = 2i. The

module generators βi, for i ≥ 0, are determined by the K(n)∗-cohomology-homology
pairing 〈ci, βj〉 = δij, for every i, j ≥ 0.

iii) Set β(i) := βpi and β(i) := 0 for i < 0. There is an isomorphism K(n)∗-algebras

K(n)∗CP∞ ∼= K(n)∗[β(0), β(1), . . . , β(k), . . . ]
/
β∗p(n+i−1) = vp

i

n β(i),

where ∗ denotes the algebra operation in K(n)∗CP∞ generated by the H-space
structure of CP∞.

iv) The comultiplication ψ on K(n)∗(CP∞) is given by

ψ(βk) =
m∑
i=0

βi ⊗ βk−i.

The following theorem determines the Hopf algebra structure of K(n)∗K1.

Theorem 3.4.
i) The induced map δ∗ : K(n)∗K1 → K(n)∗CP∞ is a Hopf algebra monomorphism.
ii) As a K(n)∗-module, we have K(n)∗K1

∼= K(n)∗[a0, a1, . . . , apn−1] with deg ak = 2k
and δ∗(ak) = βk for 0 ≤ k < pn.

Notation 3.5. Denote a(i) := api and a(i) := 0 for i < 0.

Recall that the commutative algebra multiplication of the Hopf algebra K(n)∗Km is
denote by ∗ (Proposition 1.1), for every m ≥ 0.

Corollary 3.6. There is K(n)∗-algebra isomorphism

K(n)∗K1
∼= K(n)∗[a(0), a(1), . . . , a(n−1)]

/
a∗p(n+i−1) = vp

i

n a(i).
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The comultiplication ψ on K(n)∗(CP∞) is given by

ψ(ak) =
k∑
i=0

ai ⊗ ak−i,

for 0 ≤ k ≤ pn−1. �

Sketch of the proof of Theorem 3.4. Consider the Gysin sequence

· · · → K(n)∗K1
δ∗−→ K(n)∗CP∞

∩eδ−−→ K(n)∗−2CP∞ → · · · (3.2)
y 7→ y ∩ [p]K(n)(c) (3.3)

βn+i 7→ βi, (3.4)

associated to the fibre sequence S1 → K1
δ−→ K(Z, 2) induced by the fibre sequence 3.1.

Here, eδ denotes the Euler class of the “sphere bundle” δ and [p]K(n) is the p-series of K(n).
We have eδ = [p]K(n)(c) because of the following homotopy pullback diagram

K1 S(γ1)

CP∞ CP∞,

y

×p

where S(γ1) denotes the sphere bundle associated to the tautological line bundle γ1 of CP∞.
By formula 3.4 we see that the map ∩eδ is surjective. Thus, the long exact sequence 3.2
splits into short exact sequences

0→ K(n)∗K1
δ∗−→ K(n)∗CP∞

∩eδ−−→ K(n)∗−2CP∞ → 0.

So, δ∗ is monomorphism and we can read off its image using 3.4. �

Remark 3.7. We can rewrite the algebra isomorphism in Corollary 3.6 as

K(n)∗K1
∼= K(n)∗[a(1), a(2), . . . , a(n−1)]/∼

where we quotient out by the equivalence relation given by a∗p(i) = 0, for 1 ≤ i ≤ n− 2 and

a∗p
2

(n−1) = 0.

3.2. Computation of K(n)∗Km for n > 1. Recall we wish to prove that the Hopf ring
⊕m≥0K(n)∗Km is freely generated by the Hopf algebra K(n)∗K1. So, I’ll introduce a
notation for tensor products of elements of K(n)∗K1.

Notation 3.8. For I = (i1, i2, . . . , ik, . . . , im) with 0 ≤ ik ≤ n−1, we define aI ∈ K(n)∗Km

via the iterated cup product pairing (Proposition 1.1)

◦m : K(n)∗K1 � · · ·�K(n)∗K1 → K(n)∗Km

ai1 � · · ·� aim 7→ aI := ai1 ◦ · · · ◦ aim
We mentioned at the beginning (Remark 1.6) of the talk that the Hopf ring multiplication

on ⊕m≥0K(n)∗Km encodes an exterior algebra structure. This is because of the following
proposition.

Proposition 3.9. For a(i), a(j) ∈ K(n)∗K1 with 0 ≤ i < n and 0 ≤ j < n, we have
i) a(i) ◦ a(j) = −a(j) ◦ a(i) = 0, and
ii) a(i) ◦ a(i) = 0
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Sketch. The first statement follows from axioms of Hopf rings and χ(a(i)) = −a(i) in the
Hopf algebra K(n)∗K1. The second statement follows from the first one and our convention
that p is an odd prime. For more details, see [RW80, Lemma 9.1]. �

To prove the main theorem (Theorem 3.1), it suffices to verify the following theorem.
Denote by In := (0, 1, . . . , n− 1) and Im := {(i1, i2, . . . , im) | 0 < i1 < i2 < · · · · · · im < n},
for every m ≥ 1.

Theorem 3.10. We have K(n)∗-algebra isomorphisms
i) K(n)∗K0

∼= K(n)∗[Z/ pZ],
ii) K(n)∗Kl

∼= K(n)∗, for l > n,
iii) K(n)∗Kn

∼= K(n)∗[aIn ]/ (a∗pIn + (−1)nvnaIn), and
iv) K(n)∗Km

∼=
⊗

I∈Im K(n)∗[aI ]/ a
∗ρ(I)
I for m < n, where the tensor product is over

K(n)∗ and ρ(I) = 1 + max ({0} ∪ {s+ 1 | im−s = n− 1− s}).

Remark 3.11. As a corollary of the above theorem, the K(n)∗-coalgebra structure of
K(n)∗Km is obtained from the coalgebra structure of K(n)∗K1 and the the cup product
paring map ◦ (which is a K(n)∗-coalgebra morphism), for every m ≥ 2.

In the proof of Theorem 3.10, we need to use the following proposition. Recall that
K(n) denotes the cyclic graded Morava K-theory (Definition 2.1), and recall Dieudonné
module structure on DM+(K(n)∗Km) = ∧m�D1 (Proposition 2.8).

Proposition 3.12. In K(n)∗Km, the V and F action on aI = a(i1) ◦ · · · a(im) is the same
as the one on αI = α(i1) ◦ · · · ◦ α(im) ∈ ∧m�D1, for every I ∈ Im.

The idea of proving Theorem 3.10 is by induction. We have the induction base, since part
i) of the theorem is straightforward and we fully understood the Hopf algebra structure on
K(n)∗K1 in Section 3.1. In the remaining time of the talk, I’ll introduce the key ingredient
of performing the induction step: the Bar spectral sequence.

One way to obtain Km+1 is through the Bar construction of Km, for every m ≥ 0. In
other words, we can think of Km+1 as the geometric realisation of the following simplicial
space

Km+1 = BKm = lim−→

(
· · ·Km ⊗Km ⊗Km Km ⊗Km pt

)
.

Hence, we obtain a tower of cofibrations

pt = B0Km ⊆ B1Km ⊆ · · · ⊆ BsKm ⊆ Bs+1Km ⊆ · · · ⊆ Km+1

where BsK denotes the s-truncated geometric realisation

BsKm = lim−→

(
K⊗sm · · · Km ⊗Km pt

)
.

As a consequence, we can consider the K(n)∗-homology spectral sequence associated to
the tower of cofibrations.

Theorem 3.13. There is a spectral sequence (Er
∗,∗(Km), dr)r≥1 of K(n)∗-Hopf algebras

converging to the K(n)∗Km+1 such that
i) E1

s,t(Km) ∼= K̃(n)s+t (BsKm/Bs+1Ks+1), and
ii) E2

s,t(Km) ∼= Tor
K(n)∗Km
s,t (K(n)∗,K(n)∗).

We have several remarks regarding this theorem.
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Remark 3.14.
i) Theorem 3.13.i) follows from the construction of the spectral seqeunce.
ii) To see part ii) of the theorem, we rewrite the E1-page as

E1
s,∗
∼= K̃(n)∗ (BsKm/Bs+1Ks+1)

∼= K̃(n)∗ (Σs K∧sm )

∼=
(

K̃(n)∗Km

)⊗K(n)∗s

,

(3.5)

where the second isomorphism follows from the equivalence BsKm/Bs+1Ks+1 '
Σs K∧sm and the last isomorphism is a result of Künneth isomorphism. Thus, we see
that E1

s,∗ is the bar resolution computing Tor
K(n)∗Km
s,t (K(n)∗,K(n)∗).

Remark 3.15. An important point of Theorem 3.13 is that the spectral sequence is a Hopf
algebra spectral sequence, meaning that each page is a (graded) K(n)∗-Hopf algebra and
the differential dr : Er

∗,∗ → Er
∗,∗ is a Hopf algebra derivation, for every r ≥ 1. This provides

us with useful properties of the spectral sequence which simplifies the computations. For
example,

i) For every r ≥ 1, the differential dr satisfies the Leibnitz rules

dr(x ∗ y) = x ∗ dry + drx ∗ y,
and the “co-Leibnitz” rule (as a coalgebra spectral sequence)

(dr ⊗ 1 + 1⊗ dr)ψ = ψdr.

ii) As a corollary of i), an element of the lowest homological degree supporting a
non-trivial differential must be an algebra generator.

iii) The target of every differential must be primitive, see for example [Smi70, p.78,
Lemma].

Remark 3.16. The cup product pairing induces a pairing of spectral sequences

◦i,m : Er
s,∗(Ki)⊗K(n)∗

Er
s,∗(Km)→ Er

s,∗(Ki+m),

for every i,m ≥ 0. Under this pairing, we have dr(x ◦ y) = drx ◦ y. This would imply that
the differentials in the spectral sequence Er

s,∗(Km)r≥0 can be computed inductively from
the differentials of Er

s,∗(Km−1)r≥0.

3.3. A baby example of the Bar spectral sequence. Let us take a look at the first
non-trivial example of the Bar spectral sequence. Our example takes place in the following
situation.

Situation 3.17. Let n = 2, p = 3 and thus 2pn − 2 = 16.

Recall from Remark 3.7 that we have K(2)∗-algebra isomorphism

K(2)∗K1
∼= K(2)∗

[
a(1)

]
/a∗9(1)

with deg a(1) = 6 (Theorem 3.4). One can compute the E2-page of the spectral se-
quence Er

∗,∗(K1) by writing down an explicit free resolution. Abbreviate the Hopf algebra
Tor

K(2)∗K1
∗,∗ (K(2)∗,K(2)∗) by H∗,∗ . We have

E2
∗,∗(K1) ∼= ∧K(2)∗

(
σa(1)

)
⊗K(2)∗

ΓK(2)∗

(
φ
(
a∗3(1)

))
(3.6)

where
i) ∧K(2)∗

(
σa(1)

)
denotes the exterior algebra generated by σa(1) with σa(1) ∈ H1,6,
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ii) ΓK(2)∗

(
φ
(
a∗3(1)

))
denotes the divided power algebra generated by γ1 := φ

(
a∗3(1)

)
with γ1 ∈ H2,54.

iii) Define γi ∈ ΓK(2)∗
(γ1), for i ≥ 2, inductively via γiγj =

(
i+j
i

)
γi+j. Recall that

ΓK(2)∗
(γ1) is a free K(2)∗-module generated by γi, for i ≥ 1. Furthermore, the

algebra generators of ΓK(2)∗
(γ1) are γ3j for j ≥ 0.

Remark 3.18. In the formula 3.6,
i) the element σa(1) is called “suspension” of a(1), which is in general in H1,deg a(1) , and
ii) the element φ(a∗p(1)), called “transpotence” of a∗p(1), lives in general in H2,p2 deg a(1) .

See [RW80, Lemma 6.6] for more details.

By degree reason, Remark 3.15.ii) and iii), we can verify that the first non-trivial
differentials appear on the E5-page and is generated by d5 : E5

6,k → E1
1,k−1. Ravenel–

Wilson shows further that this differentials d5 is nontrivial by using the Verschiebung and
Frobenius actions (Proposition 3.12). See Figure 3.3 for a illustration of the E5-page of
this spectral sequence3.

s+ t

s

16 32 48 64 80 96 112 128 144 160 176 192

1

2

3

4

5

6

7

8

• • • • • • • • • • • •
v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2· · · · · ·

• • • • • • • • • • • •· · · · · ·

• • • • • • • • • • • •· · · · · ·

• • • • • • • • • • • •· · · · · ·

• • • • • • • • • • • •· · · · · ·

• • • • • • • • • • • •· · · · · ·

• • • • • • • • • • • •· · · · · ·

• • • • • • • • • • • •· · · · · ·

σa(1)

γ1

σa(1)γ1

γ2

γ3

d5 · · ·

d5· · · · · ·

Figure 1. An illustration of the E5-page of the spectral sequence Er
∗,∗(K1).

Each black dots represents a copy of Fp. The horizontal blue line connecting
adjacent nodes indicates multiplication by v2. On each s-coordinate, the v2-
multiplication extends infinitely to the left and to the right. The differentials
is of degree (−1,−5). Every element with s-coordinate 5 or 7 is also hit by
a d5-differential, which we don’t draw in the picture.

Using the Hopf algebra structure of the spectral sequence, one can propogate the
differentials d5 : E5

k,6 → E5
k−1,6. It turns out that there is no room for other differentials

after we considered the differentials generated by d5. In particular, the only elements that
are not hit by the d5 are the elements in the second and the fourth line. As a result, these

3Thanks to Pablo Magni for the tex codes of the spectral sequeunces.
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are exactly the elements that survices to E∞-page. We show the E∞-page of the spectral
sequence in Figure 3.3.

s+ t

s

16 32 48 64 80 96 112 128 144 160 176 192

1

2

3

4

5

6

7

8

• • • • • • • • • • • •
v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2· · · · · ·

• • • • • • • • • • • •· · · · · ·

γ1

γ2

Figure 2. The E∞-page of the spectral sequence.

To complete the example, we remark that
i) The element a(0,1) ∈ K(2)∗K2 is represented by v−3

2 γ1, see [RW80, Lemma 9.7], and
ii) one can show that a∗3(0,1) = v2a(0,1) using again the Verschiebung and Frobenius

action on the Hopf algebra K(2)∗K2, see [RW80, Theorem 9.2.c)].
Therefore, we have and K(2)∗-algebra isomorphism

K(2)∗K2
∼= K(2)∗[a(0,1)]/a

∗3
(0,1) = v2a(0,1).
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