PROOF OF THICK SUBCATEGORY THEOREM

YUQING SHI

In this talk, our main focus is to explain the proof of the thick subcategory theorem, *cf.* Theorem 2.7. We will begin with a very brief introduction of the Spanier–Whitehead duality, which is used often in proofs in [HS98]. The main reference for this talk is [HS98] and [Rav92, Chapter 5].

1. Spanier-Whitehead duality

The original idea of Spanier–Whitehead duality is that the stable homotopy type of a compact subset $W \subseteq S^n$ determines the stable homotopy type of the complement $S^n \setminus W$. For a detailed geometric intuition, see [Ada74].

Definition 1.1. Let *E* be a spectra. We define the *Spanier–Whitehead dual* D *E* of *E* to be the function spectrum $F(E, \mathbb{S})$.

Theorem 1.2. Let F be a finite spectrum. Then the Spainier–Whitehead dual D F of F has the following property.

- i) We can consider F as the suspension spectrum of a finite CW-complex <u>F</u> embedded in S^N for some N ∈ N. Then D F is also finite, and it is a suitable (depends on N) suspension of the suspension spectrum of the complement S^N \ <u>F</u>.
- ii) We have $DDF \simeq F$.
- iii) For a homology theory h_* , there is a natural isomorphism between $h_k(F)$ and $h^{-k}(DF)$ for $k \in \mathbb{Z}$.
- iv) We have $D(F \wedge E) = DF \wedge DE$ for every spectrum E.

Let $f: E \to E' \in \mathbf{Sp}$. The (adjoint to) the induced map on Spanier–Whitehead dual can be written in the form $D f: \mathbb{S} \to E' \wedge D E$. In particular, for the map $\mathrm{id}_E: E \to E$, its Spanier–Whitehead dual is

$$\mathrm{D}\operatorname{id}_E\colon\mathbb{S}\to E\wedge\mathrm{D}\,E.$$

We are going to use the following proposition in the proof of Theorem 2.7.

Proposition 1.3. Let $X \in \mathbf{Sp}^{\text{fin}}$ and $n \in \mathbb{N} \cup \{\infty\}$. The map $\text{Did}_X : \mathbb{S} \to X \land DX$ induces a nonzero homomorphism in K(n)-homology if and only if $K(n)_*X \neq 0$.

Sketch. The map $K(n)_*(Did_X)$ of finite dimensional $K(n)_*$ -vector spaces is of the form

$$\begin{split} \mathbf{K}(\mathbf{n})_* &\to \mathbf{K}(\mathbf{n})_*(X) \otimes_{\mathbf{K}(\mathbf{n})_*} \mathbf{K}(\mathbf{n})_*(\mathbf{D}\,X) \\ 1 &\mapsto \sum_{i \in I} e_i \otimes e_i^{\vee}, \end{split}$$

where we identity $K(n)_*(DX)$ with $(K(n)_*(X))^{\vee}$ and $\{e_i\}_{i\in I}$ denotes a basis for the vector space $K(n)_*(X)$.

Date: 2019-11-05. y.shi@uu.nl.

YUQING SHI

2. PROOF OF THE THICK SUBCATEGORY THEORY

Notation 2.1. Let $m \in \mathbb{N}$. Denote by $(-)^{(m)}$ the *m*-fold smash products.

Let us recall the definition of a thick subcategory.

Definition 2.2. A full subcategory \mathcal{C} of \mathbf{Sp}^{fin} is *thick* if it is closed under weak equivalences, cofiber sequences and retracts, *i.e.*

- i) If $X \in \mathcal{C}$ and $Y \simeq X$, then $Y \in \mathcal{C}$;
- ii) If $X \to Y \to Z$ is a cofibre sequence in \mathbf{Sp}^{fin} and two of $\{X, Y, Z\}$ are in \mathcal{C} , then so is the third;
- iii) If $X \in \mathcal{C}$ and Y is a retract of X, then $Y \in \mathcal{C}$.

Remark 2.3. Let $X, Y \in \mathbf{Sp}^{\text{fin}}$ and \mathfrak{C} be a thick subcategory of \mathbf{Sp}^{fin} . It follows from Definition 2.2.iii) that if $X \vee Y \in \mathfrak{C}$, then $X \in \mathfrak{C}$ and $Y \in \mathfrak{C}$.

Remark 2.4. We will see in Magdalena's talk that we can define a thick subcategory of a general triangulated subcategory in a similar manner.

Example 2.5. Let $n \in \mathbb{N} \cup \{\infty\}$. Denote by $\mathbf{Sp}_{(p),n}^{\text{fin}}$ the full subcategory of \mathbf{Sp}^{fin} whose objects are K(n-1)-acyclic spectra. It is not hard to check that $\mathbf{Sp}_{(p),n}^{\text{fin}}$ is a thick subcategort of \mathbf{Sp}^{fin} . We omit the proof here.

Proposition 2.6. Let \mathcal{C} be a thick subcategory of \mathbf{Sp}^{fin} . If $X \in \mathcal{C}$ and $Y \in \mathbf{Sp}^{\text{fin}}$, then $X \wedge Y \in \mathcal{C}$.

Proof. Any finite spectrum is a *finite* colimit of suspensions of the sphere spectrum. It suffices then to prove that thick subcategories are closed under finite colimits and smashing with suspensions of the sphere supectrum. \Box

Theorem 2.7 (Thick subcategory theorem). If $\mathcal{C} \subseteq \mathbf{Sp}_{(p)}^{\text{fin}}$ is a thick subcategory, then $\mathcal{C} = \mathbf{Sp}_{(p),n}^{\text{fin}}$ for some $0 \le n \le \infty$.

For the proof of this theorem, we need to use a refined version of the nilpotence theorem, and a useful cofibre sequence, cf. Corollary 2.12. Let me recall these first.

Definition 2.8. A map $f: E \to E' \in \mathbf{Sp}$ is smash nilpotent if $f^{(n)}: E^{(m)} \to (E')^{(m)}$ is null-homotopic for large enough m.

Theorem 2.9 (Nilpotence theorem). A map $f: F \to E \in \mathbf{Sp}$ with $F \in \mathbf{Sp}^{\text{fin}}$ and $E \in \mathbf{Sp}_{(p)}$ is smash nilpotent if and only if $K(n)_*(f) = 0$ for all $0 \le n \le \infty$.

Proof. We will prove this in the future talks. You can also find a proof in [Rav92, Theorem 5.1.4].

Corollary 2.10. Let $F, Z \in \mathbf{Sp}^{\text{fin}}$ and $E \in \mathbf{Sp}$ and R is a ring spectrum. We have

i) If a map $f \colon F \to E \wedge R$ satisfies $K(n)_* f = 0$ for all $0 \le n \le \infty$, then the composite

$$\phi \colon F^{(m)} \xrightarrow{f^{(m)}} (E \wedge R)^{(m)} \cong E^{(m)} \wedge R^{(m)} \xrightarrow{\operatorname{id}_{E^{(m)}} \wedge \mu_R}} E^{(m)} \xrightarrow{\operatorname{id}_{E^{(m)}} \cap \mu_R}} E^{(m)} \xrightarrow{\operatorname{id}_{E^{(m)}} \wedge \mu_R}} E^{(m)} \xrightarrow{\operatorname{id}_{E^{(m)}} \cap \mu_R}} E^{(m)} \xrightarrow{\operatorname{id}_{E^{(m)}} \cap$$

is null-homotopic for large enough m. Here μ_R denotes the multiplication of R. ii) A map $g: F \to E$ has the property that

$$g^{(m)} \wedge \mathrm{id}_Z \colon F^{(m)} \wedge Z \to E^{(m)} \wedge Z$$

is null-homotopic for large enough m if and only if

$$\mathrm{K}(\mathrm{n})_{*}(q \wedge \mathrm{id}_{Z}) = 0$$

for all $0 \leq n \leq \infty$.

Proof. Part i) follows from Theorem 2.9: f is smash nilpotent.

The proof for par ii) is the following: If $g^{(m)} \wedge id_Z$ is null-homotopic for large enough m, the induced map

$$K(n)_*(g^{(m)} \wedge id_Z): (K(n)_*(F))^{(m)} \otimes_{K(n)_*} K(n)_*(Z) \to (K(n)_*(E))^{(m)} \otimes_{K(n)_*} K(n)_*(Z)$$

is the null map of $K(n)_*$ -vector spaces, for all $0 \le n \le \infty$. Here $(K(n)_*(F))^{(m)}$ and $(K(n)_*(E))^{(m)}$ denotes *m*-fold tensor product over $K(n)_*$. Thus we have that $K(n)_*(g) = 0$ for all $0 \le n \le \infty$. Therefore $K(n)_*(g \land id_Z) = 0$ for all $0 \le n \le n$.

For the "if"-direction, the Spainer–Whitehead dual of the map $g \wedge id_Z$ is

$$g' \colon F \to E \wedge Z \wedge D Z$$

via Spanier–Whitehead duality

Thus we have that $K(n)_*(g') = 0$ for all $0 \le n \le \infty$.

Note that $Z \wedge D Z$ is a ring spectrum. Thus applying part i), we have that the composite

 $F^{(m)} \to E^{(m)} \wedge Z \wedge \mathrm{D} Z,$

which is the Spainer–Whitehead dual of the map $g^{(m)} \wedge \mathrm{id}_Z$, is null-homotopic for large enough m. Therefore, $g^{(m)} \wedge \mathrm{id}_Z$ is null-homotopic for large enough m.

The following are two pieces of elementary stable homotopy theory.

Lemma 2.11. Let $E, E', E'' \in \mathbf{Sp}$, and $E \xrightarrow{f} E' \xrightarrow{g} E''$ be a sequence of maps. The map $\operatorname{cofib}(f) \to \operatorname{cofib}(g \circ f)$ induced by g gives rise to a cofibre sequence

 $\operatorname{cofib}(f) \to \operatorname{cofib}(g \circ f) \to \operatorname{cofib}(g).$

Proof. See [Ada74, Lemma III.6.8].

Corollary 2.12. Let $f \in E \to E'$ and $g \in E'' \to E'''$ be maps of spectra. There is a cofibre sequence

$$E \wedge \operatorname{cofib}(g) \to \operatorname{cofib}(f \wedge g) \to \operatorname{cofib}(g) \wedge E'.$$

Proof. Identify $f \wedge g$ with $(f \wedge id_{E'}) \circ (id_E \wedge g)$ and apply Lemma 2.11.

Proof of Theorem 2.7. To proof this theorem, it suffices to show that

Claim 2.13. Let $X \in \mathfrak{C}$ and $Y \in \mathbf{Sp}^{\text{fin}}$. If $\operatorname{supp}(Y) \subseteq \operatorname{supp}(X)$, then $Y \in \mathfrak{C}$.

Let $Z \in \mathbf{Sp}^{\text{fin}}$. Recall from Tommy's talk, we have

$$\operatorname{supp}(Z) = \{ n \in \mathbb{N} \cup \{ \infty \} \mid \operatorname{K}(n)_*(Z) \neq 0 \}.$$

It follows from the claim that

$$\mathcal{C} = \mathbf{Sp}_{(p),n}^{\mathrm{fm}} \text{ with } n \coloneqq \min\{m \in \mathbb{N} \cup \{\infty\} \mid \exists X \in \mathcal{C}, \ \mathrm{K}(\mathrm{m})_*(X) \neq 0\}.$$

Proof of the Claim 2.13. Consider the fibre sequence

$$F \xrightarrow{f} \mathbb{S} \xrightarrow{\mathrm{Did}_X} X \wedge \mathrm{D} X$$

Note that $\operatorname{cofib}(f) \simeq X \wedge D X$. By Proposition 2.6, we have that $Y \wedge \operatorname{cofib}(f) \in \mathbb{C}$. Let us set $g = f^{(m-1)}$ and apply Corrolary 2.12, we obtain a cofiber sequence

$$Y \wedge F \wedge \operatorname{cofib}(f^{(m-1)}) \to Y \wedge \operatorname{cofib}(f^{(m)}) \to Y \wedge \operatorname{cofib}(f) \wedge F^{(m-1)}.$$

Thus by induction, we have that

$$Y \wedge \operatorname{cofib}\left(f^{(m)}\right) \in \mathcal{C}$$

for all $m \in \mathbb{N}$.

By Proposition 1.3, we have that $K(m)_{\star} f \neq 0$ if and only if $m \notin \operatorname{supp}(X)$. Therefore,

 $\mathrm{K}(\mathrm{m})_*(\mathrm{id}_Y \wedge f) = 0, \ \forall m \in \mathbb{N}.$

Indeed, if $m \notin \operatorname{supp}(Y)$, we have the $\operatorname{K}(m)_*(Y) = 0$; if $m \in \operatorname{supp}(Y) \subseteq \operatorname{supp}(X)$, we have $\operatorname{K}(m)_*(f) = 0$.

By Corollary 2.10, we have that $id_Y \wedge f^m$ is null-homotopic for m large enough. Thus we have

$$Y \wedge \operatorname{cofib}(f^{(m)}) \simeq \operatorname{cofib}(\operatorname{id}_Y \wedge f^{(m)}) \simeq Y \vee (\Sigma(Y \wedge F^{(m)})).$$

Thus Y is a retract of $Y \wedge \operatorname{cofib}(f^{(m)}) \in \mathfrak{C}$. Therefore $Y \in \mathfrak{C}$.

Remark 2.14. Actually, the thick subcategory theorem is equivalent to the nilpotence theorem. There is a proof in [HS98, Section 4.5].

References

- [Ada74] J. F. Adams. Stable homotopy and generalised homology. University of Chicago Press, Chicago, Ill.-London, 1974. Chicago Lectures in Mathematics.
- [HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. Math. (2), 148(1):1–49, 1998.
- [Rav92] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith.