
PROOF OF THICK SUBCATEGORY THEOREM

YUQING SHI

In this talk, our main focus is to explain the proof of the thick subcategory theorem,
cf. Theorem 2.7. We will begin with a very brief introduction of the Spanier–Whitehead
duality, which is used often in proofs in [HS98]. The main reference for this talk is [HS98]
and [Rav92, Chapter 5].

1. Spanier–Whitehead duality

The original idea of Spanier–Whitehead duality is that the stable homotopy type of a
compact subset W ⊆ Sn determines the stable homotopy type of the complement Sn \W .
For a detailed geometric intuition, see [Ada74].

Definition 1.1. Let E be a spectra. We define the Spanier–Whitehead dual DE of E to
be the function spectrum F(E, S).

Theorem 1.2. Let F be a finite spectrum. Then the Spainier–Whitehead dual DF of F
has the following property.

i) We can consider F as the suspension spectrum of a finite CW-complex F embedded
in SN for some N ∈ N. Then DF is also finite, and it is a suitable (depends on
N) suspension of the suspension spectrum of the complement SN \ F .

ii) We have DDF ≃ F .
iii) For a homology theory h∗, there is a natural isomorphism between hk(F ) and

h−k(DF ) for k ∈ Z.
iv) We have D(F ∧ E) = DF ∧DE for every spectrum E.

Let f : E → E ′ ∈ Sp. The (adjoint to) the induced map on Spanier–Whitehead dual
can be written in the form D f : S → E ′ ∧ DE. In particular, for the map idE : E → E,
its Spanier–Whitehead dual is

D idE : S → E ∧DE.

We are going to use the following proposition in the proof of Theorem 2.7.

Proposition 1.3. Let X ∈ Spfin and n ∈ N ∪ {∞}. The map D idX : S → X ∧ DX
induces a nonzero homomorphism in K(n)-homology if and only if K(n)∗X ∕= 0.

Sketch. The map K(n)∗(D idX) of finite dimensional K(n)∗-vector spaces is of the form

K(n)∗ → K(n)∗(X)⊗K(n)∗
K(n)∗(DX)

1 *→
!

i∈I

ei ⊗ e∨i ,

where we identity K(n)∗(DX) with (K(n)∗(X))∨ and {ei}i∈I denotes a basis for the vector
space K(n)∗(X). □
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2. Proof of the thick subcategory theory

Notation 2.1. Let m ∈ N. Denote by (−)(m) the m-fold smash products.

Let us recall the definition of a thick subcategory.

Definition 2.2. A full subcategory C of Spfin is thick if it is closed under weak equiva-
lences, cofiber sequences and retracts, i.e.

i) If X ∈ C and Y ≃ X, then Y ∈ C;
ii) If X → Y → Z is a cofibre sequence in Spfin and two of {X, Y, Z} are in C, then

so is the third;
iii) If X ∈ C and Y is a retract of X, then Y ∈ C.

Remark 2.3. Let X, Y ∈ Spfin and C be a thick subcategory of Spfin. It follows from
Definition 2.2.iii) that if X ∨ Y ∈ C, then X ∈ C and Y ∈ C.

Remark 2.4. We will see in Magdalena’s talk that we can define a thick subcategory of a
general triangulated subcategory in a similar manner.

Example 2.5. Let n ∈ N ∪ {∞}. Denote by Spfin
(p),n the full subcategory of Spfin whose

objects are K(n− 1)-acyclic spectra. It is not hard to check that Spfin
(p),n is a thick sub-

categort of Spfin. We omit the proof here.

Proposition 2.6. Let C be a thick subcategory of Spfin. If X ∈ C and Y ∈ Spfin, then
X ∧ Y ∈ C.

Proof. Any finite spectrum is a finite colimit of suspensions of the sphere spectrum. It
suffices then to prove that thick subcategories are closed under finite colimits and smashing
with suspensions of the sphere supectrum. □
Theorem 2.7 (Thick subcategory theorem). If C ⊆ Spfin

(p) is a thick subcategory, then
C = Spfin

(p),n for some 0 ≤ n ≤ ∞.

For the proof of this theorem, we need to use a refined version of the nilpotence theorem,
and a useful cofibre sequence, cf. Corollary 2.12. Let me recall these first.

Definition 2.8. A map f : E → E ′ ∈ Sp is smash nilpotent if f (n) : E(m) → (E ′)(m) is
null-homotopic for large enough m.

Theorem 2.9 (Nilpotence theorem). A map f : F → E ∈ Sp with F ∈ Spfin and
E ∈ Sp(p) is smash nilpotent if and only if K(n)∗(f) = 0 for all 0 ≤ n ≤ ∞.

Proof. We will prove this in the future talks. You can also find a proof in [Rav92, Theorem
5.1.4]. □
Corollary 2.10. Let F,Z ∈ Spfin and E ∈ Sp and R is a ring spectrum. We have

i) If a map f : F → E∧R satisfies K(n)∗f = 0 for all 0 ≤ n ≤ ∞, then the composite

φ : F (m) f (m)

−−→ (E ∧R)(m) ∼= E(m) ∧R(m)
id

E(m) ∧µR−−−−−−→ E(m) ∧R

is null-homotopic for large enough m. Here µR denotes the multiplication of R.
ii) A map g : F → E has the property that

g(m) ∧ idZ : F
(m) ∧ Z → E(m) ∧ Z

is null-homotopic for large enough m if and only if

K(n)∗(g ∧ idZ) = 0

for all 0 ≤ n ≤ ∞.
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Proof. Part i) follows from Theorem 2.9: f is smash nilpotent.
The proof for par ii) is the following: If g(m) ∧ idZ is null-homotopic for large enough

m, the induced map

K(n)∗(g
(m) ∧ idZ) : (K(n)∗(F ))(m) ⊗K(n)∗

K(n)∗(Z) → (K(n)∗(E))(m) ⊗K(n)∗
K(n)∗(Z)

is the null map of K(n)∗-vector spaces, for all 0 ≤ n ≤ ∞. Here (K(n)∗(F ))(m) and
(K(n)∗(E))(m) denotes m-fold tensor product over K(n)∗. Thus we have that K(n)∗(g) = 0
for all 0 ≤ n ≤ ∞. Therefore K(n)∗(g ∧ idZ) = 0 for all 0 ≤ n ≤ n.

For the “if”-direction, the Spainer–Whitehead dual of the map g ∧ idZ is

g′ : F → E ∧ Z ∧DZ

via Spanier–Whitehead duality
Thus we have that K(n)∗(g

′) = 0 for all 0 ≤ n ≤ ∞.
Note that Z∧DZ is a ring spectrum. Thus applying part i), we have that the composite

F (m) → E(m) ∧ Z ∧DZ,

which is the Spainer–Whitehead dual of the map g(m) ∧ idZ , is null-homotopic for large
enough m. Therefore, g(m) ∧ idZ is null-homotopic for large enough m.

□
The following are two pieces of elementary stable homotopy theory.

Lemma 2.11. Let E,E ′, E ′′ ∈ Sp, and E
f−→ E ′ g−→ E ′′ be a sequence of maps. The map

cofib(f) → cofib(g ◦ f) induced by g gives rise to a cofibre sequence

cofib(f) → cofib(g ◦ f) → cofib(g).

Proof. See [Ada74, Lemma III.6.8]. □
Corollary 2.12. Let f ∈ E → E ′ and g ∈ E ′′ → E ′′′ be maps of spectra. There is a
cofibre sequence

E ∧ cofib(g) → cofib(f ∧ g) → cofib(g) ∧ E ′.

Proof. Identify f ∧ g with (f ∧ idE′) ◦ (idE ∧g) and apply Lemma 2.11. □
Proof of Theorem 2.7. To proof this theorem, it suffices to show that

Claim 2.13. Let X ∈ C and Y ∈ Spfin. If supp(Y ) ⊆ supp(X), then Y ∈ C.

Let Z ∈ Spfin. Recall from Tommy’s talk, we have

supp(Z) = {n ∈ N ∪ {∞} | K(n)∗(Z) ∕= 0}.
It follows from the claim that

C = Spfin
(p),n with n := min{m ∈ N ∪ {∞} | ∃X ∈ C, K(m)∗(X) ∕= 0}.

Proof of the Claim 2.13. Consider the fibre sequence

F
f−→ S D idX−−−→ X ∧DX

Note that cofib(f) ≃ X ∧ DX. By Proposition 2.6, we have that Y ∧ cofib(f) ∈ C. Let
us set g = f (m−1) and apply Corrolary 2.12, we obtain a cofiber sequence

Y ∧ F ∧ cofib
"
f (m−1)

#
→ Y ∧ cofib

"
f (m)

#
→ Y ∧ cofib(f) ∧ F (m−1).

Thus by induction, we have that

Y ∧ cofib
"
f (m)

#
∈ C
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for all m ∈ N.
By Proposition 1.3, we have that K(m)∗f ∕= 0 if and only if m ∕∈ supp(X). Therefore,

K(m)∗ (idY ∧f) = 0, ∀m ∈ N.
Indeed, if m ∕∈ supp(Y ), we have the K(m)∗(Y ) = 0; if m ∈ supp(Y ) ⊆ supp(X), we have
K(m)∗(f) = 0.

By Corollary 2.10, we have that idY ∧fm is null-homotopic for m large enough. Thus
we have

Y ∧ cofib
"
f (m)

#
≃ cofib

"
idY ∧f (m)

#
≃ Y ∨

"
Σ
"
Y ∧ F (m)

##
.

Thus Y is a retract of Y ∧ cofib
"
f (m)

#
∈ C. Therefore Y ∈ C. □

□
Remark 2.14. Actually, the thick subcategory theorem is equivalent to the nilpotence
theorem. There is a proof in [HS98, Section 4.5].
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